我想从目录中读取几个CSV文件到熊猫,并将它们连接到一个大的DataFrame。不过我还没弄明白。以下是我目前所掌握的:

import glob
import pandas as pd

# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")

dfs = []
for filename in filenames:
    dfs.append(pd.read_csv(filename))

# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)

我想我在for循环中需要一些帮助?


当前回答

Dask库可以从多个文件中读取数据帧:

>>> import dask.dataframe as dd
>>> df = dd.read_csv('data*.csv')

(来源:https://examples.dask.org/dataframes/01-data-access.html # Read-CSV-files)

Dask数据框架实现了Pandas数据框架API的一个子集。如果所有的数据都适合内存,你可以调用df.compute()将数据帧转换为Pandas数据帧。

其他回答

你也可以这样做:

import pandas as pd
import os

new_df = pd.DataFrame()
for r, d, f in os.walk(csv_folder_path):
    for file in f:
        complete_file_path = csv_folder_path+file
        read_file = pd.read_csv(complete_file_path)
        new_df = new_df.append(read_file, ignore_index=True)


new_df.shape

另一个带有列表理解的一行程序,允许使用read_csv参数。

df = pd.concat([pd.read_csv(f'dir/{f}') for f in os.listdir('dir') if f.endswith('.csv')])

可选择使用pathlib库(通常优先于os.path)。

该方法避免了重复使用pandas concat()/ apping()。

从熊猫文档中可以看到: 值得注意的是,concat()(因此append())会生成数据的完整副本,并且不断重用此函数会产生显著的性能影响。如果需要对多个数据集使用操作,请使用列表推导式。

import pandas as pd
from pathlib import Path

dir = Path("../relevant_directory")

df = (pd.read_csv(f) for f in dir.glob("*.csv"))
df = pd.concat(df)

如果多个CSV文件被压缩,您可以使用zipfile读取所有文件并按以下方式连接:

import zipfile
import pandas as pd

ziptrain = zipfile.ZipFile('yourpath/yourfile.zip')

train = []

train = [ pd.read_csv(ziptrain.open(f)) for f in ziptrain.namelist() ]

df = pd.concat(train)

基于希德的好答案。

识别列缺失或未对齐的问题

在连接之前,您可以将CSV文件加载到一个中间字典中,该字典根据文件名(以dict_of_df['filename.csv']的形式)访问每个数据集。这样的字典可以帮助您识别异构数据格式的问题,例如当列名没有对齐时。

导入模块并定位文件路径:

import os
import glob
import pandas
from collections import OrderedDict
path =r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")

注意:OrderedDict不是必需的,但它将保持文件的顺序,这可能对分析有用。

加载CSV文件到字典中。然后连接:

dict_of_df = OrderedDict((f, pandas.read_csv(f)) for f in filenames)
pandas.concat(dict_of_df, sort=True)

键为文件名称f,值为CSV文件的数据帧内容。

除了使用f作为字典键,你还可以使用os.path.basename(f)或其他os.path.basename(f)。方法将字典中键的大小减少到仅相关的较小部分。