我想从目录中读取几个CSV文件到熊猫,并将它们连接到一个大的DataFrame。不过我还没弄明白。以下是我目前所掌握的:
import glob
import pandas as pd
# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")
dfs = []
for filename in filenames:
dfs.append(pd.read_csv(filename))
# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)
我想我在for循环中需要一些帮助?
基于希德的好答案。
识别列缺失或未对齐的问题
在连接之前,您可以将CSV文件加载到一个中间字典中,该字典根据文件名(以dict_of_df['filename.csv']的形式)访问每个数据集。这样的字典可以帮助您识别异构数据格式的问题,例如当列名没有对齐时。
导入模块并定位文件路径:
import os
import glob
import pandas
from collections import OrderedDict
path =r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")
注意:OrderedDict不是必需的,但它将保持文件的顺序,这可能对分析有用。
加载CSV文件到字典中。然后连接:
dict_of_df = OrderedDict((f, pandas.read_csv(f)) for f in filenames)
pandas.concat(dict_of_df, sort=True)
键为文件名称f,值为CSV文件的数据帧内容。
除了使用f作为字典键,你还可以使用os.path.basename(f)或其他os.path.basename(f)。方法将字典中键的大小减少到仅相关的较小部分。