要删除DataFrame中的列,我可以成功使用:

del df['column_name']

但为什么我不能使用以下选项?

del df.column_name

由于可以通过df.column_name访问该系列,所以我希望这能奏效。


当前回答

按索引删除

删除第一列、第二列和第四列:

df.drop(df.columns[[0,1,3]], axis=1, inplace=True)

删除第一列:

df.drop(df.columns[[0]], axis=1, inplace=True)

此处有一个可选参数可以在不创建副本的情况下修改数据。

被逮捕的

列选择、添加、删除

删除列列名:

df.pop('column-name')

示例:

df = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6]), ('C', [7,8, 9])], orient='index', columns=['one', 'two', 'three'])

打印df:

   one  two  three
A    1    2      3
B    4    5      6
C    7    8      9

df.drop(df.columns[[0],axis=1,inplace=True)打印df:

   two  three
A    2      3
B    5      6
C    8      9

三=df.pop(“三”)打印df:

   two
A    2
B    5
C    8

其他回答

在Pandas DataFrame中删除列的另一种方法

如果您不希望就地删除,则可以通过使用DataFrame(…)函数指定列来创建一个新的DataFrame:

my_dict = { 'name' : ['a','b','c','d'], 'age' : [10,20,25,22], 'designation' : ['CEO', 'VP', 'MD', 'CEO']}

df = pd.DataFrame(my_dict)

创建新的DataFrame作为

newdf = pd.DataFrame(df, columns=['name', 'age'])

你得到的结果和del/drop一样好。

Use:

columns = ['Col1', 'Col2', ...]
df.drop(columns, inplace=True, axis=1)

这将在位删除一个或多个列。请注意,inplace=True是在panda v0.13中添加的,在旧版本中不起作用。在这种情况下,您必须重新分配结果:

df = df.drop(columns, axis=1)

Use:

df.drop('columnname', axis =1, inplace = True)

或者你可以和

del df['colname']

基于列编号删除多个列的步骤

df.drop(df.iloc[:,1:3], axis = 1, inplace = True)

基于列名删除多个列的步骤

df.drop(['col1','col2',..'coln'], axis = 1, inplace = True)

总是使用[]符号是一个很好的做法。一个原因是属性表示法(df.column_name)不适用于编号索引:

In [1]: df = DataFrame([[1, 2, 3], [4, 5, 6]])

In [2]: df[1]
Out[2]:
0    2
1    5
Name: 1

In [3]: df.1
  File "<ipython-input-3-e4803c0d1066>", line 1
    df.1
       ^
SyntaxError: invalid syntax

一个很好的补充是,只有列存在时才可以删除它们。这样,您可以覆盖更多的用例,并且它只会从传递给它的标签中删除现有列:

例如,只需添加errors='ignore':

df.drop(['col_name_1', 'col_name_2', ..., 'col_name_N'], inplace=True, axis=1, errors='ignore')

这是熊猫0.16.1以后的新版本。文档在这里。