要删除DataFrame中的列,我可以成功使用:
del df['column_name']
但为什么我不能使用以下选项?
del df.column_name
由于可以通过df.column_name访问该系列,所以我希望这能奏效。
要删除DataFrame中的列,我可以成功使用:
del df['column_name']
但为什么我不能使用以下选项?
del df.column_name
由于可以通过df.column_name访问该系列,所以我希望这能奏效。
当前回答
总是使用[]符号是一个很好的做法。一个原因是属性表示法(df.column_name)不适用于编号索引:
In [1]: df = DataFrame([[1, 2, 3], [4, 5, 6]])
In [2]: df[1]
Out[2]:
0 2
1 5
Name: 1
In [3]: df.1
File "<ipython-input-3-e4803c0d1066>", line 1
df.1
^
SyntaxError: invalid syntax
其他回答
如果原始数据帧df不太大,没有内存限制,只需要保留几列,或者,如果事先不知道不需要的所有额外列的名称,那么不妨创建一个只包含所需列的新数据帧:
new_df = df[['spam', 'sausage']]
Pandas 0.21+答案
Pandas 0.21版略微更改了drop方法,以包括索引和列参数,以匹配重命名和重新索引方法的签名。
df.drop(columns=['column_a', 'column_c'])
就我个人而言,我更喜欢使用axis参数来表示列或索引,因为它是几乎所有panda方法中使用的主要关键字参数。但是,现在您在0.21版中增加了一些选择。
在Pandas DataFrame中删除列的另一种方法
如果您不希望就地删除,则可以通过使用DataFrame(…)函数指定列来创建一个新的DataFrame:
my_dict = { 'name' : ['a','b','c','d'], 'age' : [10,20,25,22], 'designation' : ['CEO', 'VP', 'MD', 'CEO']}
df = pd.DataFrame(my_dict)
创建新的DataFrame作为
newdf = pd.DataFrame(df, columns=['name', 'age'])
你得到的结果和del/drop一样好。
使用数据帧和切片的iloc函数删除列,当我们有一个带有不需要的值的典型列名时:
df = df.iloc[:,1:] # Removing an unnamed index column
这里0是默认行,1是第一列,因此:,1:是删除第一列的参数。
点语法在JavaScript中有效,但在Python中无效。
Python:del df['column_name]JavaScript:del df['column_name]或del df.column_name