要删除DataFrame中的列,我可以成功使用:
del df['column_name']
但为什么我不能使用以下选项?
del df.column_name
由于可以通过df.column_name访问该系列,所以我希望这能奏效。
要删除DataFrame中的列,我可以成功使用:
del df['column_name']
但为什么我不能使用以下选项?
del df.column_name
由于可以通过df.column_name访问该系列,所以我希望这能奏效。
当前回答
Pandas 0.21+答案
Pandas 0.21版略微更改了drop方法,以包括索引和列参数,以匹配重命名和重新索引方法的签名。
df.drop(columns=['column_a', 'column_c'])
就我个人而言,我更喜欢使用axis参数来表示列或索引,因为它是几乎所有panda方法中使用的主要关键字参数。但是,现在您在0.21版中增加了一些选择。
其他回答
按索引删除
删除第一列、第二列和第四列:
df.drop(df.columns[[0,1,3]], axis=1, inplace=True)
删除第一列:
df.drop(df.columns[[0]], axis=1, inplace=True)
此处有一个可选参数可以在不创建副本的情况下修改数据。
被逮捕的
列选择、添加、删除
删除列列名:
df.pop('column-name')
示例:
df = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6]), ('C', [7,8, 9])], orient='index', columns=['one', 'two', 'three'])
打印df:
one two three
A 1 2 3
B 4 5 6
C 7 8 9
df.drop(df.columns[[0],axis=1,inplace=True)打印df:
two three
A 2 3
B 5 6
C 8 9
三=df.pop(“三”)打印df:
two
A 2
B 5
C 8
使用数据帧和切片的iloc函数删除列,当我们有一个带有不需要的值的典型列名时:
df = df.iloc[:,1:] # Removing an unnamed index column
这里0是默认行,1是第一列,因此:,1:是删除第一列的参数。
Pandas 0.21+答案
Pandas 0.21版略微更改了drop方法,以包括索引和列参数,以匹配重命名和重新索引方法的签名。
df.drop(columns=['column_a', 'column_c'])
就我个人而言,我更喜欢使用axis参数来表示列或索引,因为它是几乎所有panda方法中使用的主要关键字参数。但是,现在您在0.21版中增加了一些选择。
Use:
columns = ['Col1', 'Col2', ...]
df.drop(columns, inplace=True, axis=1)
这将在位删除一个或多个列。请注意,inplace=True是在panda v0.13中添加的,在旧版本中不起作用。在这种情况下,您必须重新分配结果:
df = df.drop(columns, axis=1)
在Pandas中执行此操作的最佳方法是使用drop:
df = df.drop('column_name', axis=1)
其中1是轴号(0表示行,1表示列。)
或者,drop()方法接受索引/列关键字作为指定轴的替代方法。所以我们现在可以做:
df = df.drop(columns=['column_nameA', 'column_nameB'])
这是在v0.21.0中引入的(2017年10月27日)
要删除列而不必重新分配df,可以执行以下操作:
df.drop('column_name', axis=1, inplace=True)
最后,要按列编号而不是按列标签删除,请尝试删除,例如,第1列、第2列和第4列:
df = df.drop(df.columns[[0, 1, 3]], axis=1) # df.columns is zero-based pd.Index
同时使用列的“text”语法:
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)