要删除DataFrame中的列,我可以成功使用:

del df['column_name']

但为什么我不能使用以下选项?

del df.column_name

由于可以通过df.column_name访问该系列,所以我希望这能奏效。


当前回答

在Pandas 0.16.1+中,只有当列按照eiTan LaVi发布的解决方案存在时,才能删除它们。在此版本之前,您可以通过条件列表理解获得相同的结果:

df.drop([col for col in ['col_name_1','col_name_2',...,'col_name_N'] if col in df],
        axis=1, inplace=True)

其他回答

在Pandas DataFrame中删除列的另一种方法

如果您不希望就地删除,则可以通过使用DataFrame(…)函数指定列来创建一个新的DataFrame:

my_dict = { 'name' : ['a','b','c','d'], 'age' : [10,20,25,22], 'designation' : ['CEO', 'VP', 'MD', 'CEO']}

df = pd.DataFrame(my_dict)

创建新的DataFrame作为

newdf = pd.DataFrame(df, columns=['name', 'age'])

你得到的结果和del/drop一样好。

正如您所猜测的,正确的语法是

del df['column_name']

由于Python中的语法限制,很难使del df.column_name正常工作。deldf[name]被翻译成df__delitem__(name)在Python的封面下。

Use:

df.drop('columnname', axis =1, inplace = True)

或者你可以和

del df['colname']

基于列编号删除多个列的步骤

df.drop(df.iloc[:,1:3], axis = 1, inplace = True)

基于列名删除多个列的步骤

df.drop(['col1','col2',..'coln'], axis = 1, inplace = True)

Use:

columns = ['Col1', 'Col2', ...]
df.drop(columns, inplace=True, axis=1)

这将在位删除一个或多个列。请注意,inplace=True是在panda v0.13中添加的,在旧版本中不起作用。在这种情况下,您必须重新分配结果:

df = df.drop(columns, axis=1)

通过使用自动补全或“IntelliSense”而不是字符串文字来获得优势:

del df[df.column1.name]

# or

df.drop(df.column1.name, axis=1, inplace=True)

它适用于当前的Pandas版本。