要删除DataFrame中的列,我可以成功使用:
del df['column_name']
但为什么我不能使用以下选项?
del df.column_name
由于可以通过df.column_name访问该系列,所以我希望这能奏效。
要删除DataFrame中的列,我可以成功使用:
del df['column_name']
但为什么我不能使用以下选项?
del df.column_name
由于可以通过df.column_name访问该系列,所以我希望这能奏效。
当前回答
如果原始数据帧df不太大,没有内存限制,只需要保留几列,或者,如果事先不知道不需要的所有额外列的名称,那么不妨创建一个只包含所需列的新数据帧:
new_df = df[['spam', 'sausage']]
其他回答
在Pandas 0.16.1+中,只有当列按照eiTan LaVi发布的解决方案存在时,才能删除它们。在此版本之前,您可以通过条件列表理解获得相同的结果:
df.drop([col for col in ['col_name_1','col_name_2',...,'col_name_N'] if col in df],
axis=1, inplace=True)
在Pandas中执行此操作的最佳方法是使用drop:
df = df.drop('column_name', axis=1)
其中1是轴号(0表示行,1表示列。)
或者,drop()方法接受索引/列关键字作为指定轴的替代方法。所以我们现在可以做:
df = df.drop(columns=['column_nameA', 'column_nameB'])
这是在v0.21.0中引入的(2017年10月27日)
要删除列而不必重新分配df,可以执行以下操作:
df.drop('column_name', axis=1, inplace=True)
最后,要按列编号而不是按列标签删除,请尝试删除,例如,第1列、第2列和第4列:
df = df.drop(df.columns[[0, 1, 3]], axis=1) # df.columns is zero-based pd.Index
同时使用列的“text”语法:
df.drop(['column_nameA', 'column_nameB'], axis=1, inplace=True)
如果原始数据帧df不太大,没有内存限制,只需要保留几列,或者,如果事先不知道不需要的所有额外列的名称,那么不妨创建一个只包含所需列的新数据帧:
new_df = df[['spam', 'sausage']]
Use:
columns = ['Col1', 'Col2', ...]
df.drop(columns, inplace=True, axis=1)
这将在位删除一个或多个列。请注意,inplace=True是在panda v0.13中添加的,在旧版本中不起作用。在这种情况下,您必须重新分配结果:
df = df.drop(columns, axis=1)
从Python的一般观点来看,如果可以删除属性column_name,del obj.column_name是有意义的。它需要是一个常规属性,或者是一个定义了删除器的属性。
这不适用于Pandas,也不适用于Pandas数据帧的原因如下:
考虑df.column_name是一个“虚拟属性”,它本身不是一个东西,它不是该列的“座位”,它只是访问该列的一种方式。很像没有删除器的属性。