要删除DataFrame中的列,我可以成功使用:
del df['column_name']
但为什么我不能使用以下选项?
del df.column_name
由于可以通过df.column_name访问该系列,所以我希望这能奏效。
要删除DataFrame中的列,我可以成功使用:
del df['column_name']
但为什么我不能使用以下选项?
del df.column_name
由于可以通过df.column_name访问该系列,所以我希望这能奏效。
当前回答
如果原始数据帧df不太大,没有内存限制,只需要保留几列,或者,如果事先不知道不需要的所有额外列的名称,那么不妨创建一个只包含所需列的新数据帧:
new_df = df[['spam', 'sausage']]
其他回答
Use:
columns = ['Col1', 'Col2', ...]
df.drop(columns, inplace=True, axis=1)
这将在位删除一个或多个列。请注意,inplace=True是在panda v0.13中添加的,在旧版本中不起作用。在这种情况下,您必须重新分配结果:
df = df.drop(columns, axis=1)
一个很好的补充是,只有列存在时才可以删除它们。这样,您可以覆盖更多的用例,并且它只会从传递给它的标签中删除现有列:
例如,只需添加errors='ignore':
df.drop(['col_name_1', 'col_name_2', ..., 'col_name_N'], inplace=True, axis=1, errors='ignore')
这是熊猫0.16.1以后的新版本。文档在这里。
Use:
df.drop('columnname', axis =1, inplace = True)
或者你可以和
del df['colname']
基于列编号删除多个列的步骤
df.drop(df.iloc[:,1:3], axis = 1, inplace = True)
基于列名删除多个列的步骤
df.drop(['col1','col2',..'coln'], axis = 1, inplace = True)
从Python的一般观点来看,如果可以删除属性column_name,del obj.column_name是有意义的。它需要是一个常规属性,或者是一个定义了删除器的属性。
这不适用于Pandas,也不适用于Pandas数据帧的原因如下:
考虑df.column_name是一个“虚拟属性”,它本身不是一个东西,它不是该列的“座位”,它只是访问该列的一种方式。很像没有删除器的属性。
使用数据帧和切片的iloc函数删除列,当我们有一个带有不需要的值的典型列名时:
df = df.iloc[:,1:] # Removing an unnamed index column
这里0是默认行,1是第一列,因此:,1:是删除第一列的参数。