我的Jupyter笔记本电脑安装了python 2内核。我不明白为什么。我可能在安装的时候搞砸了。我已经安装了python 3。我怎么能把它加到木星上? 下面是默认的Jupyter使用python3 -m install Jupyter安装并在浏览器中使用Jupyter notebook打开的截图:


当前回答

在Ubuntu 14.04上,我不得不使用之前答案的组合。

首先,安装pip3 安装python-pip3

然后用pip3安装jupyter Pip3安装jupyter

然后使用ipython3安装内核 Ipython3内核安装

其他回答

在ElementaryOS Freya(基于Ubuntu 14.04)上,其他答案都没有立即对我起作用;我得到了

[TerminalIPythonApp]警告|文件不存在:'kernelspec'

quickbug在Matt的回答中描述的错误。我首先要做的是:

Sudo apt-get安装pip3

安装ipython[所有]

这时你就可以运行Matt建议的命令了;即:ipython kernelspec install-self和ipython3 kernelspec install-self

现在,当我启动ipython notebook,然后打开一个notebook时,我能够从kernel菜单中选择Python 3内核。

除了Python2之外,我还设法安装了Python3内核。我是这样做的:

在木星上打开一个新的笔记本 复制并运行这里的两个单元格:Enable-Python-3-kernel

最新的工作链接可以在这里找到。

实际代码为:

! mkdir -p ~/.ipython/kernels/python3
%%file ~/.ipython/kernels/python3/kernel.json

{
 "display_name": "IPython (Python 3)", 
 "language": "python", 
 "argv": [
  "python3", 
  "-c", "from IPython.kernel.zmq.kernelapp import main; main()", 
  "-f", "{connection_file}"
 ], 
 "codemirror_mode": {
  "version": 2, 
  "name": "ipython"
 }
}

这个回答解释了如何使用Poetry依赖管理创建Python 3、Jupyter 1和ipykernel 5工作流。诗歌使创建一个虚拟环境的Jupyter笔记本很容易。我强烈建议不要运行python3命令。安装全局依赖项的Python工作流程会让你陷入依赖项地狱。

以下是对干净、可靠的Poetry工作流程的总结:

安装依赖诗词添加熊猫jupyter ipykernel 在虚拟环境中用诗壳打开一个壳 打开Jupyter notebook,访问与Jupyter notebook相关的所有虚拟环境

还有干净的Conda工作流。注意这个帖子里的很多答案——它们会让你走上一条会给你带来很多痛苦和折磨的道路。

Here's a Windows/non command line method I found, which worked for me: Find the folder where the kernel files are stored (on my machine - C:\ProgramData\jupyter\kernels - note that ProgramData is a hidden folder), create a copy of the existing kernel's folder, change the name and edit the json file within to point to the new kernel's directory. In this json you can also edit the kernel name that is displayed in ipython (e.g. instead of just python 2 you can specify 2.7.9 if you need to further distinguish for some reason).

对于jupyter/ipython的最新版本:使用jupyter kernelspec

完整文档:https://ipython.readthedocs.io/en/latest/install/kernel_install.html

列出当前内核

$ jupyter kernelspec list
Available kernels:
  python2    .../Jupyter/kernels/python2
  python3    .../Jupyter/kernels/python3

在我的例子中,python3内核设置被破坏了,因为py3.5链接不再存在,取而代之的是py3.6

添加/删除内核

删除:

$ jupyter kernelspec uninstall python3

添加一个新的: 使用你想要添加的Python并指向运行jupiter的Python:

$ /path/to/kernel/env/bin/python -m ipykernel install --prefix=/path/to/jupyter/env --name 'python-my-env'

更多例子见https://ipython.readthedocs.io/en/6.5.0/install/kernel_install.html#kernels-for-different-environments

列表:

$ jupyter kernelspec list
Available kernels:
  python3    /usr/local/lib/python3.6/site-packages/ipykernel/resources
  python2    /Users/stefano/Library/Jupyter/kernels/python2

道格:https://jupyter-client.readthedocs.io/en/latest/kernels.html kernelspecs

细节

可用的内核列在Jupyter DATA DIRECTORY的Kernels文件夹下(详情请参阅http://jupyter.readthedocs.io/en/latest/projects/jupyter-directories.html)。

例如,在macosx上,应该是/Users/YOURUSERNAME/Library/Jupyter/kernels/

内核被简单地描述为内核。Json文件,例如。/用户/我/图书馆/ Jupyter /内核/ python3 / kernel.json

{
 "argv": [
  "/usr/local/opt/python3/bin/python3.5",
  "-m",
  "ipykernel",
  "-f",
  "{connection_file}"
 ],
 "language": "python",
 "display_name": "Python 3"
}

您可以使用kernelspec命令(如上所述),而不是手动操作。以前可以通过ipython使用,现在可以通过jupyter (http://ipython.readthedocs.io/en/stable/install/kernel_install.html#kernels-for-different-environments - https://jupyter-client.readthedocs.io/en/latest/kernels.html#kernelspecs)使用。

$ jupyter kernelspec help
Manage Jupyter kernel specifications.

Subcommands
-----------

Subcommands are launched as `jupyter kernelspec cmd [args]`. For information on
using subcommand 'cmd', do: `jupyter kernelspec cmd -h`.

list
    List installed kernel specifications.
install
    Install a kernel specification directory.
uninstall
    Alias for remove
remove
    Remove one or more Jupyter kernelspecs by name.
install-self
    [DEPRECATED] Install the IPython kernel spec directory for this Python.

To see all available configurables, use `--help-all`

其他语言的内核

顺便说一下,与这个问题没有严格联系,但有很多其他可用的内核…https://github.com/jupyter/jupyter/wiki/Jupyter-kernels