我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。


当前回答

当使用qt (qt 4.3+)时,可以使用QPolygon的函数containsPoint

其他回答

简单的解决方案是将多边形划分为三角形,并按这里解释的那样对三角形进行测试

如果你的多边形是凸多边形,可能有更好的方法。把这个多边形看作是无限条线的集合。每一行将空间一分为二。对于每一个点,很容易判断它是在直线的一边还是另一边。如果一个点在所有直线的同一侧,那么它在多边形内。

我已经做了nirg的c++代码的Python实现:

输入

Bounding_points:组成多边形的节点。 Bounding_box_positions:筛选的候选点。(在我从边界框创建的实现中。 (输入为元组列表,格式为:[(xcord, ycord),…])

返回

多边形内的所有点。

def polygon_ray_casting(self, bounding_points, bounding_box_positions):
    # Arrays containing the x- and y-coordinates of the polygon's vertices.
    vertx = [point[0] for point in bounding_points]
    verty = [point[1] for point in bounding_points]
    # Number of vertices in the polygon
    nvert = len(bounding_points)
    # Points that are inside
    points_inside = []

    # For every candidate position within the bounding box
    for idx, pos in enumerate(bounding_box_positions):
        testx, testy = (pos[0], pos[1])
        c = 0
        for i in range(0, nvert):
            j = i - 1 if i != 0 else nvert - 1
            if( ((verty[i] > testy ) != (verty[j] > testy))   and
                    (testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) + vertx[i]) ):
                c += 1
        # If odd, that means that we are inside the polygon
        if c % 2 == 1: 
            points_inside.append(pos)


    return points_inside

同样,这个想法也是从这里得来的

我认为这是迄今为止所有答案中最简洁的一个。

例如,假设我们有一个多边形,它带有多边形凹,看起来像这样:

大多边形顶点的二维坐标为

[[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]

方框顶点的坐标为

[[248, 518], [336, 510], [341, 614], [250, 620]]

空心三角形顶点的坐标为

[[416, 531], [505, 517], [495, 616]]

假设我们想要测试两个点[296,557]和[422,730],如果它们在红色区域内(不包括边缘)。如果我们定位这两个点,它将是这样的:

显然,[296,557]不在读取区域内,而[422,730]在。

我的解决方案是基于圈数算法。下面是我只使用numpy的4行python代码:

def detect(points, *polygons):
    import numpy as np
    endpoint1 = np.r_[tuple(np.roll(p, 1, 0) for p in polygons)][:, None] - points
    endpoint2 = np.r_[polygons][:, None] - points
    p1, p2 = np.cross(endpoint1, endpoint2), np.einsum('...i,...i', endpoint1, endpoint2)
    return ~((p1.sum(0) < 0) ^ (abs(np.arctan2(p1, p2).sum(0)) > np.pi) | ((p1 == 0) & (p2 <= 0)).any(0))

要测试实现:

points = [[296, 557], [422, 730]]
polygon1 = [[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
polygon2 = [[248, 518], [336, 510], [341, 614], [250, 620]]
polygon3 = [[416, 531], [505, 517], [495, 616]]

print(detect(points, polygon1, polygon2, polygon3))

输出:

[False  True]

在Ray casting算法中处理以下特殊情况:

射线与多边形的一条边重叠。 点在多边形的内部,光线穿过多边形的顶点。 该点在多边形的外部,光线只接触到多边形的一个角。

检查确定一个点是否在一个复杂多边形内。本文提供了一种简单的解决方法,因此对于上述情况不需要特殊处理。

我认为下面这段代码是最好的解决方案(从这里开始):

int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
  int i, j, c = 0;
  for (i = 0, j = nvert-1; i < nvert; j = i++) {
    if ( ((verty[i]>testy) != (verty[j]>testy)) &&
     (testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
       c = !c;
  }
  return c;
}

参数

nvert:多边形中的顶点数。是否在末端重复第一个顶点在上面的文章中已经讨论过了。 vertx, verty:包含多边形顶点的x坐标和y坐标的数组。 testx, testy:测试点的X坐标和y坐标。

它既简短又高效,适用于凸多边形和凹多边形。如前所述,您应该首先检查边界矩形,并单独处理多边形孔。

这背后的想法很简单。作者描述如下:

我从测试点水平运行一条半无限射线(增加x,固定y),并计算它穿过多少条边。在每个十字路口,光线在内部和外部之间切换。这叫做乔丹曲线定理。

当水平射线穿过任意一条边时,变量c从0变为1,从1变为0。基本上它记录了交叉边的数量是偶数还是奇数。0表示偶数,1表示奇数。