我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
Scala版本的解决方案由nirg(假设边界矩形预检查是单独完成的):
def inside(p: Point, polygon: Array[Point], bounds: Bounds): Boolean = {
val length = polygon.length
@tailrec
def oddIntersections(i: Int, j: Int, tracker: Boolean): Boolean = {
if (i == length)
tracker
else {
val intersects = (polygon(i).y > p.y) != (polygon(j).y > p.y) && p.x < (polygon(j).x - polygon(i).x) * (p.y - polygon(i).y) / (polygon(j).y - polygon(i).y) + polygon(i).x
oddIntersections(i + 1, i, if (intersects) !tracker else tracker)
}
}
oddIntersections(0, length - 1, tracker = false)
}
其他回答
当使用qt (qt 4.3+)时,可以使用QPolygon的函数containsPoint
Scala版本的解决方案由nirg(假设边界矩形预检查是单独完成的):
def inside(p: Point, polygon: Array[Point], bounds: Bounds): Boolean = {
val length = polygon.length
@tailrec
def oddIntersections(i: Int, j: Int, tracker: Boolean): Boolean = {
if (i == length)
tracker
else {
val intersects = (polygon(i).y > p.y) != (polygon(j).y > p.y) && p.x < (polygon(j).x - polygon(i).x) * (p.y - polygon(i).y) / (polygon(j).y - polygon(i).y) + polygon(i).x
oddIntersections(i + 1, i, if (intersects) !tracker else tracker)
}
}
oddIntersections(0, length - 1, tracker = false)
}
下面是nirg给出的答案的c#版本,它来自RPI教授。请注意,使用来自RPI源代码的代码需要归属。
在顶部添加了一个边界框复选。然而,正如James Brown所指出的,主代码几乎和边界框检查本身一样快,所以边界框检查实际上会减慢整体操作,因为您正在检查的大多数点都在边界框内。所以你可以让边界框签出,或者另一种选择是预先计算多边形的边界框,如果它们不经常改变形状的话。
public bool IsPointInPolygon( Point p, Point[] polygon )
{
double minX = polygon[ 0 ].X;
double maxX = polygon[ 0 ].X;
double minY = polygon[ 0 ].Y;
double maxY = polygon[ 0 ].Y;
for ( int i = 1 ; i < polygon.Length ; i++ )
{
Point q = polygon[ i ];
minX = Math.Min( q.X, minX );
maxX = Math.Max( q.X, maxX );
minY = Math.Min( q.Y, minY );
maxY = Math.Max( q.Y, maxY );
}
if ( p.X < minX || p.X > maxX || p.Y < minY || p.Y > maxY )
{
return false;
}
// https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html
bool inside = false;
for ( int i = 0, j = polygon.Length - 1 ; i < polygon.Length ; j = i++ )
{
if ( ( polygon[ i ].Y > p.Y ) != ( polygon[ j ].Y > p.Y ) &&
p.X < ( polygon[ j ].X - polygon[ i ].X ) * ( p.Y - polygon[ i ].Y ) / ( polygon[ j ].Y - polygon[ i ].Y ) + polygon[ i ].X )
{
inside = !inside;
}
}
return inside;
}
我认为这是迄今为止所有答案中最简洁的一个。
例如,假设我们有一个多边形,它带有多边形凹,看起来像这样:
大多边形顶点的二维坐标为
[[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
方框顶点的坐标为
[[248, 518], [336, 510], [341, 614], [250, 620]]
空心三角形顶点的坐标为
[[416, 531], [505, 517], [495, 616]]
假设我们想要测试两个点[296,557]和[422,730],如果它们在红色区域内(不包括边缘)。如果我们定位这两个点,它将是这样的:
显然,[296,557]不在读取区域内,而[422,730]在。
我的解决方案是基于圈数算法。下面是我只使用numpy的4行python代码:
def detect(points, *polygons):
import numpy as np
endpoint1 = np.r_[tuple(np.roll(p, 1, 0) for p in polygons)][:, None] - points
endpoint2 = np.r_[polygons][:, None] - points
p1, p2 = np.cross(endpoint1, endpoint2), np.einsum('...i,...i', endpoint1, endpoint2)
return ~((p1.sum(0) < 0) ^ (abs(np.arctan2(p1, p2).sum(0)) > np.pi) | ((p1 == 0) & (p2 <= 0)).any(0))
要测试实现:
points = [[296, 557], [422, 730]]
polygon1 = [[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
polygon2 = [[248, 518], [336, 510], [341, 614], [250, 620]]
polygon3 = [[416, 531], [505, 517], [495, 616]]
print(detect(points, polygon1, polygon2, polygon3))
输出:
[False True]
真的很喜欢Nirg发布的解决方案,由bobobobo编辑。我只是让它javascript友好,更容易读懂我的使用:
function insidePoly(poly, pointx, pointy) {
var i, j;
var inside = false;
for (i = 0, j = poly.length - 1; i < poly.length; j = i++) {
if(((poly[i].y > pointy) != (poly[j].y > pointy)) && (pointx < (poly[j].x-poly[i].x) * (pointy-poly[i].y) / (poly[j].y-poly[i].y) + poly[i].x) ) inside = !inside;
}
return inside;
}
推荐文章
- 如何找到Java堆大小和内存使用(Linux)?
- 如何在HTML5中改变视频的播放速度?
- 我如何提高ASP。NET MVC应用程序性能?
- 列表推导式和函数式函数比for循环更快吗?
- 圆线段碰撞检测算法?
- Pandas loc vs iloc vs at vs iat?
- 当WebSockets可用时,为什么要使用AJAX ?
- SurfaceView和View的区别?
- 一个字符串的字符串列表
- .NET反射的成本有多高?
- 在c#中检查字符串是否只包含数字的最快方法
- JavaScript变量声明在循环外还是循环内?
- 为什么C语言这么快,为什么其他语言没有这么快或更快?
- String与StringBuilder
- 为什么引入无用的MOV指令会加速x86_64汇编中的紧循环?