我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
我认为下面这段代码是最好的解决方案(从这里开始):
int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++) {
if ( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
c = !c;
}
return c;
}
参数
nvert:多边形中的顶点数。是否在末端重复第一个顶点在上面的文章中已经讨论过了。 vertx, verty:包含多边形顶点的x坐标和y坐标的数组。 testx, testy:测试点的X坐标和y坐标。
它既简短又高效,适用于凸多边形和凹多边形。如前所述,您应该首先检查边界矩形,并单独处理多边形孔。
这背后的想法很简单。作者描述如下:
我从测试点水平运行一条半无限射线(增加x,固定y),并计算它穿过多少条边。在每个十字路口,光线在内部和外部之间切换。这叫做乔丹曲线定理。
当水平射线穿过任意一条边时,变量c从0变为1,从1变为0。基本上它记录了交叉边的数量是偶数还是奇数。0表示偶数,1表示奇数。
其他回答
真的很喜欢Nirg发布的解决方案,由bobobobo编辑。我只是让它javascript友好,更容易读懂我的使用:
function insidePoly(poly, pointx, pointy) {
var i, j;
var inside = false;
for (i = 0, j = poly.length - 1; i < poly.length; j = i++) {
if(((poly[i].y > pointy) != (poly[j].y > pointy)) && (pointx < (poly[j].x-poly[i].x) * (pointy-poly[i].y) / (poly[j].y-poly[i].y) + poly[i].x) ) inside = !inside;
}
return inside;
}
如果你正在使用谷歌Map SDK,想要检查一个点是否在一个多边形内,你可以尝试使用GMSGeometryContainsLocation。效果很好!!它是这样运作的,
if GMSGeometryContainsLocation(point, polygon, true) {
print("Inside this polygon.")
} else {
print("outside this polygon")
}
这里是参考资料:https://developers.google.com/maps/documentation/ios-sdk/reference/group___geometry_utils#gaba958d3776d49213404af249419d0ffd
我认为下面这段代码是最好的解决方案(从这里开始):
int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++) {
if ( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
c = !c;
}
return c;
}
参数
nvert:多边形中的顶点数。是否在末端重复第一个顶点在上面的文章中已经讨论过了。 vertx, verty:包含多边形顶点的x坐标和y坐标的数组。 testx, testy:测试点的X坐标和y坐标。
它既简短又高效,适用于凸多边形和凹多边形。如前所述,您应该首先检查边界矩形,并单独处理多边形孔。
这背后的想法很简单。作者描述如下:
我从测试点水平运行一条半无限射线(增加x,固定y),并计算它穿过多少条边。在每个十字路口,光线在内部和外部之间切换。这叫做乔丹曲线定理。
当水平射线穿过任意一条边时,变量c从0变为1,从1变为0。基本上它记录了交叉边的数量是偶数还是奇数。0表示偶数,1表示奇数。
您可以通过检查将所需点连接到多边形顶点所形成的面积是否与多边形本身的面积相匹配来实现这一点。
或者你可以检查从你的点到每一对连续的多边形顶点到你的检查点的内角之和是否为360,但我有一种感觉,第一种选择更快,因为它不涉及除法,也不计算三角函数的反函数。
我不知道如果你的多边形内部有一个洞会发生什么,但在我看来,主要思想可以适应这种情况
你也可以把问题贴在数学社区里。我打赌他们有一百万种方法
为了完整性,这里是nirg提供的算法的lua实现,由Mecki讨论:
function pnpoly(area, test)
local inside = false
local tx, ty = table.unpack(test)
local j = #area
for i=1, #area do
local vxi, vyi = table.unpack(area[i])
local vxj, vyj = table.unpack(area[j])
if (vyi > ty) ~= (vyj > ty)
and tx < (vxj - vxi)*(ty - vyi)/(vyj - vyi) + vxi
then
inside = not inside
end
j = i
end
return inside
end
变量区域是一个点的表,这些点依次存储为2D表。例子:
> A = {{2, 1}, {1, 2}, {15, 3}, {3, 4}, {5, 3}, {4, 1.5}}
> T = {2, 1.1}
> pnpoly(A, T)
true
GitHub Gist的链接。
推荐文章
- 如何找到Java堆大小和内存使用(Linux)?
- 如何在HTML5中改变视频的播放速度?
- 我如何提高ASP。NET MVC应用程序性能?
- 列表推导式和函数式函数比for循环更快吗?
- 圆线段碰撞检测算法?
- Pandas loc vs iloc vs at vs iat?
- 当WebSockets可用时,为什么要使用AJAX ?
- SurfaceView和View的区别?
- 一个字符串的字符串列表
- .NET反射的成本有多高?
- 在c#中检查字符串是否只包含数字的最快方法
- JavaScript变量声明在循环外还是循环内?
- 为什么C语言这么快,为什么其他语言没有这么快或更快?
- String与StringBuilder
- 为什么引入无用的MOV指令会加速x86_64汇编中的紧循环?