我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
以下是M. Katz基于Nirg方法的答案的JavaScript变体:
function pointIsInPoly(p, polygon) {
var isInside = false;
var minX = polygon[0].x, maxX = polygon[0].x;
var minY = polygon[0].y, maxY = polygon[0].y;
for (var n = 1; n < polygon.length; n++) {
var q = polygon[n];
minX = Math.min(q.x, minX);
maxX = Math.max(q.x, maxX);
minY = Math.min(q.y, minY);
maxY = Math.max(q.y, maxY);
}
if (p.x < minX || p.x > maxX || p.y < minY || p.y > maxY) {
return false;
}
var i = 0, j = polygon.length - 1;
for (i, j; i < polygon.length; j = i++) {
if ( (polygon[i].y > p.y) != (polygon[j].y > p.y) &&
p.x < (polygon[j].x - polygon[i].x) * (p.y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x ) {
isInside = !isInside;
}
}
return isInside;
}
其他回答
net端口:
static void Main(string[] args)
{
Console.Write("Hola");
List<double> vertx = new List<double>();
List<double> verty = new List<double>();
int i, j, c = 0;
vertx.Add(1);
vertx.Add(2);
vertx.Add(1);
vertx.Add(4);
vertx.Add(4);
vertx.Add(1);
verty.Add(1);
verty.Add(2);
verty.Add(4);
verty.Add(4);
verty.Add(1);
verty.Add(1);
int nvert = 6; //Vértices del poligono
double testx = 2;
double testy = 5;
for (i = 0, j = nvert - 1; i < nvert; j = i++)
{
if (((verty[i] > testy) != (verty[j] > testy)) &&
(testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) + vertx[i]))
c = 1;
}
}
from typing import Iterable
def pnpoly(verts, x, y):
#check if x and/or y is iterable
xit, yit = isinstance(x, Iterable), isinstance(y, Iterable)
#if not iterable, make an iterable of length 1
X = x if xit else (x, )
Y = y if yit else (y, )
#store verts length as a range to juggle j
r = range(len(verts))
#final results if x or y is iterable
results = []
#traverse x and y coordinates
for xp in X:
for yp in Y:
c = 0 #reset c at every new position
for i in r:
j = r[i-1] #set j to position before i
#store a few arguments to shorten the if statement
yneq = (verts[i][1] > yp) != (verts[j][1] > yp)
xofs, yofs = (verts[j][0] - verts[i][0]), (verts[j][1] - verts[i][1])
#if we have crossed a line, increment c
if (yneq and (xp < xofs * (yp - verts[i][1]) / yofs + verts[i][0])):
c += 1
#if c is odd store the coordinates
if c%2:
results.append((xp, yp))
#return either coordinates or a bool, depending if x or y was an iterable
return results if (xit or yit) else bool(c%2)
这个python版本是通用的。您可以为True/False结果输入单个x和单个y值,也可以使用x和y的范围来遍历整个点网格。如果使用范围,则返回所有True点的x/y对列表。vertices参数需要一个由x/y对组成的二维Iterable,例如:[(x1,y1), (x2,y2),…]
使用示例:
vertices = [(25,25), (75,25), (75,75), (25,75)]
pnpoly(vertices, 50, 50) #True
pnpoly(vertices, range(100), range(100)) #[(25,25), (25,26), (25,27), ...]
实际上,这些都可以。
pnpoly(vertices, 50, range(100)) #check 0 to 99 y at x of 50
pnpoly(vertices, range(100), 50) #check 0 to 99 x at y of 50
下面是nirg给出的答案的c#版本,它来自RPI教授。请注意,使用来自RPI源代码的代码需要归属。
在顶部添加了一个边界框复选。然而,正如James Brown所指出的,主代码几乎和边界框检查本身一样快,所以边界框检查实际上会减慢整体操作,因为您正在检查的大多数点都在边界框内。所以你可以让边界框签出,或者另一种选择是预先计算多边形的边界框,如果它们不经常改变形状的话。
public bool IsPointInPolygon( Point p, Point[] polygon )
{
double minX = polygon[ 0 ].X;
double maxX = polygon[ 0 ].X;
double minY = polygon[ 0 ].Y;
double maxY = polygon[ 0 ].Y;
for ( int i = 1 ; i < polygon.Length ; i++ )
{
Point q = polygon[ i ];
minX = Math.Min( q.X, minX );
maxX = Math.Max( q.X, maxX );
minY = Math.Min( q.Y, minY );
maxY = Math.Max( q.Y, maxY );
}
if ( p.X < minX || p.X > maxX || p.Y < minY || p.Y > maxY )
{
return false;
}
// https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html
bool inside = false;
for ( int i = 0, j = polygon.Length - 1 ; i < polygon.Length ; j = i++ )
{
if ( ( polygon[ i ].Y > p.Y ) != ( polygon[ j ].Y > p.Y ) &&
p.X < ( polygon[ j ].X - polygon[ i ].X ) * ( p.Y - polygon[ i ].Y ) / ( polygon[ j ].Y - polygon[ i ].Y ) + polygon[ i ].X )
{
inside = !inside;
}
}
return inside;
}
如果你正在寻找一个java脚本库,有一个javascript谷歌maps v3扩展的Polygon类,以检测是否有一个点驻留在它里面。
var polygon = new google.maps.Polygon([], "#000000", 1, 1, "#336699", 0.3);
var isWithinPolygon = polygon.containsLatLng(40, -90);
谷歌扩展Github
在C语言的多边形测试中,有一个点没有使用光线投射。它可以用于重叠区域(自我交叉),请参阅use_holes参数。
/* math lib (defined below) */
static float dot_v2v2(const float a[2], const float b[2]);
static float angle_signed_v2v2(const float v1[2], const float v2[2]);
static void copy_v2_v2(float r[2], const float a[2]);
/* intersection function */
bool isect_point_poly_v2(const float pt[2], const float verts[][2], const unsigned int nr,
const bool use_holes)
{
/* we do the angle rule, define that all added angles should be about zero or (2 * PI) */
float angletot = 0.0;
float fp1[2], fp2[2];
unsigned int i;
const float *p1, *p2;
p1 = verts[nr - 1];
/* first vector */
fp1[0] = p1[0] - pt[0];
fp1[1] = p1[1] - pt[1];
for (i = 0; i < nr; i++) {
p2 = verts[i];
/* second vector */
fp2[0] = p2[0] - pt[0];
fp2[1] = p2[1] - pt[1];
/* dot and angle and cross */
angletot += angle_signed_v2v2(fp1, fp2);
/* circulate */
copy_v2_v2(fp1, fp2);
p1 = p2;
}
angletot = fabsf(angletot);
if (use_holes) {
const float nested = floorf((angletot / (float)(M_PI * 2.0)) + 0.00001f);
angletot -= nested * (float)(M_PI * 2.0);
return (angletot > 4.0f) != ((int)nested % 2);
}
else {
return (angletot > 4.0f);
}
}
/* math lib */
static float dot_v2v2(const float a[2], const float b[2])
{
return a[0] * b[0] + a[1] * b[1];
}
static float angle_signed_v2v2(const float v1[2], const float v2[2])
{
const float perp_dot = (v1[1] * v2[0]) - (v1[0] * v2[1]);
return atan2f(perp_dot, dot_v2v2(v1, v2));
}
static void copy_v2_v2(float r[2], const float a[2])
{
r[0] = a[0];
r[1] = a[1];
}
注意:这是一个不太理想的方法,因为它包含很多对atan2f的调用,但它可能会引起阅读这个线程的开发人员的兴趣(在我的测试中,它比使用线交方法慢23倍)。
推荐文章
- 即使从未抛出异常,使用try-catch块的代价是否昂贵?
- 如何有效地从数组列表或字符串数组中删除所有空元素?
- 在SQL Server上使用varchar(MAX) vs TEXT
- .toArray(new MyClass[0]) or .toArray(new MyClass[myList.size()])?
- 是什么导致JNI调用变慢?
- 检查属性是否有属性
- 如何快速清除JavaScript对象?
- Node.js vs .Net性能
- 如果使用if-return-return或if-else-return?
- 为什么MYSQL的高LIMIT偏移量减慢查询?
- SQL JOIN vs IN性能?
- 如何产生类似ios7模糊视图的效果?
- GraphViz -如何连接子图?
- 如何找到Java堆大小和内存使用(Linux)?
- 如何在HTML5中改变视频的播放速度?