我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
以下是M. Katz基于Nirg方法的答案的JavaScript变体:
function pointIsInPoly(p, polygon) {
var isInside = false;
var minX = polygon[0].x, maxX = polygon[0].x;
var minY = polygon[0].y, maxY = polygon[0].y;
for (var n = 1; n < polygon.length; n++) {
var q = polygon[n];
minX = Math.min(q.x, minX);
maxX = Math.max(q.x, maxX);
minY = Math.min(q.y, minY);
maxY = Math.max(q.y, maxY);
}
if (p.x < minX || p.x > maxX || p.y < minY || p.y > maxY) {
return false;
}
var i = 0, j = polygon.length - 1;
for (i, j; i < polygon.length; j = i++) {
if ( (polygon[i].y > p.y) != (polygon[j].y > p.y) &&
p.x < (polygon[j].x - polygon[i].x) * (p.y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x ) {
isInside = !isInside;
}
}
return isInside;
}
其他回答
下面是nirg给出的答案的c#版本,它来自RPI教授。请注意,使用来自RPI源代码的代码需要归属。
在顶部添加了一个边界框复选。然而,正如James Brown所指出的,主代码几乎和边界框检查本身一样快,所以边界框检查实际上会减慢整体操作,因为您正在检查的大多数点都在边界框内。所以你可以让边界框签出,或者另一种选择是预先计算多边形的边界框,如果它们不经常改变形状的话。
public bool IsPointInPolygon( Point p, Point[] polygon )
{
double minX = polygon[ 0 ].X;
double maxX = polygon[ 0 ].X;
double minY = polygon[ 0 ].Y;
double maxY = polygon[ 0 ].Y;
for ( int i = 1 ; i < polygon.Length ; i++ )
{
Point q = polygon[ i ];
minX = Math.Min( q.X, minX );
maxX = Math.Max( q.X, maxX );
minY = Math.Min( q.Y, minY );
maxY = Math.Max( q.Y, maxY );
}
if ( p.X < minX || p.X > maxX || p.Y < minY || p.Y > maxY )
{
return false;
}
// https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html
bool inside = false;
for ( int i = 0, j = polygon.Length - 1 ; i < polygon.Length ; j = i++ )
{
if ( ( polygon[ i ].Y > p.Y ) != ( polygon[ j ].Y > p.Y ) &&
p.X < ( polygon[ j ].X - polygon[ i ].X ) * ( p.Y - polygon[ i ].Y ) / ( polygon[ j ].Y - polygon[ i ].Y ) + polygon[ i ].X )
{
inside = !inside;
}
}
return inside;
}
nirg回答的Swift版本:
extension CGPoint {
func isInsidePolygon(vertices: [CGPoint]) -> Bool {
guard !vertices.isEmpty else { return false }
var j = vertices.last!, c = false
for i in vertices {
let a = (i.y > y) != (j.y > y)
let b = (x < (j.x - i.x) * (y - i.y) / (j.y - i.y) + i.x)
if a && b { c = !c }
j = i
}
return c
}
}
计算点p与每个多边形顶点之间的有向角和。如果总倾斜角是360度,那么这个点在里面。如果总数为0,则点在外面。
我更喜欢这种方法,因为它更健壮,对数值精度的依赖更小。
计算交集数量的均匀性的方法是有限的,因为你可以在计算交集数量的过程中“击中”一个顶点。
编辑:顺便说一下,这种方法适用于凹凸多边形。
编辑:我最近在维基百科上找到了一篇关于这个话题的完整文章。
这只适用于凸形状,但是Minkowski Portal Refinement和GJK也是测试一个点是否在多边形中的很好的选择。您使用闵可夫斯基减法从多边形中减去点,然后运行这些算法来查看多边形是否包含原点。
另外,有趣的是,你可以用支持函数更隐式地描述你的形状,它以一个方向向量作为输入,并输出沿该向量的最远点。这可以让你描述任何凸形状..弯曲的,由多边形制成的,或混合的您还可以执行一些操作,将简单支持函数的结果组合起来,以生成更复杂的形状。
更多信息: http://xenocollide.snethen.com/mpr2d.html
此外,game programming gems 7讨论了如何在3d中做到这一点(:
下面是golang版本的@nirg答案(灵感来自于@@m-katz的c#代码)
func isPointInPolygon(polygon []point, testp point) bool {
minX := polygon[0].X
maxX := polygon[0].X
minY := polygon[0].Y
maxY := polygon[0].Y
for _, p := range polygon {
minX = min(p.X, minX)
maxX = max(p.X, maxX)
minY = min(p.Y, minY)
maxY = max(p.Y, maxY)
}
if testp.X < minX || testp.X > maxX || testp.Y < minY || testp.Y > maxY {
return false
}
inside := false
j := len(polygon) - 1
for i := 0; i < len(polygon); i++ {
if (polygon[i].Y > testp.Y) != (polygon[j].Y > testp.Y) && testp.X < (polygon[j].X-polygon[i].X)*(testp.Y-polygon[i].Y)/(polygon[j].Y-polygon[i].Y)+polygon[i].X {
inside = !inside
}
j = i
}
return inside
}
推荐文章
- 确定记录是否存在的最快方法
- 阅读GHC核心
- Python: List vs Dict用于查找表
- 为什么MATLAB的矩阵乘法运算这么快?
- for循环和for-each循环在性能上有区别吗?
- 就性能而言,使用std::memcpy()还是std::copy()更好?
- 什么时候我应该(不)想要在我的代码中使用熊猫apply() ?
- 如何加速gwt编译器?
- MySQL OR与IN性能
- 应该……接住环内还是环外?
- 哪个更快/最好?SELECT *或SELECT columnn1, colum2, column3等
- 加快R中的循环操作
- INT和VARCHAR主键之间有真正的性能差异吗?
- c++标准是否要求iostreams的性能很差,或者我只是在处理一个糟糕的实现?
- 大概的成本访问各种缓存和主存储器?