我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
David Segond's answer is pretty much the standard general answer, and Richard T's is the most common optimization, though therre are some others. Other strong optimizations are based on less general solutions. For example if you are going to check the same polygon with lots of points, triangulating the polygon can speed things up hugely as there are a number of very fast TIN searching algorithms. Another is if the polygon and points are on a limited plane at low resolution, say a screen display, you can paint the polygon onto a memory mapped display buffer in a given colour, and check the color of a given pixel to see if it lies in the polygons.
像许多优化一样,这些优化是基于特定情况而不是一般情况,并且基于摊销时间而不是单次使用产生效益。
在这个领域工作,我发现约瑟夫·奥鲁克斯的《计算几何》在C' ISBN 0-521-44034-3是一个很大的帮助。
其他回答
我知道这是旧的,但这里是一个在Cocoa实现的光线投射算法,如果有人感兴趣的话。不确定这是最有效的方法,但它可能会帮助别人。
- (BOOL)shape:(NSBezierPath *)path containsPoint:(NSPoint)point
{
NSBezierPath *currentPath = [path bezierPathByFlatteningPath];
BOOL result;
float aggregateX = 0; //I use these to calculate the centroid of the shape
float aggregateY = 0;
NSPoint firstPoint[1];
[currentPath elementAtIndex:0 associatedPoints:firstPoint];
float olderX = firstPoint[0].x;
float olderY = firstPoint[0].y;
NSPoint interPoint;
int noOfIntersections = 0;
for (int n = 0; n < [currentPath elementCount]; n++) {
NSPoint points[1];
[currentPath elementAtIndex:n associatedPoints:points];
aggregateX += points[0].x;
aggregateY += points[0].y;
}
for (int n = 0; n < [currentPath elementCount]; n++) {
NSPoint points[1];
[currentPath elementAtIndex:n associatedPoints:points];
//line equations in Ax + By = C form
float _A_FOO = (aggregateY/[currentPath elementCount]) - point.y;
float _B_FOO = point.x - (aggregateX/[currentPath elementCount]);
float _C_FOO = (_A_FOO * point.x) + (_B_FOO * point.y);
float _A_BAR = olderY - points[0].y;
float _B_BAR = points[0].x - olderX;
float _C_BAR = (_A_BAR * olderX) + (_B_BAR * olderY);
float det = (_A_FOO * _B_BAR) - (_A_BAR * _B_FOO);
if (det != 0) {
//intersection points with the edges
float xIntersectionPoint = ((_B_BAR * _C_FOO) - (_B_FOO * _C_BAR)) / det;
float yIntersectionPoint = ((_A_FOO * _C_BAR) - (_A_BAR * _C_FOO)) / det;
interPoint = NSMakePoint(xIntersectionPoint, yIntersectionPoint);
if (olderX <= points[0].x) {
//doesn't matter in which direction the ray goes, so I send it right-ward.
if ((interPoint.x >= olderX && interPoint.x <= points[0].x) && (interPoint.x > point.x)) {
noOfIntersections++;
}
} else {
if ((interPoint.x >= points[0].x && interPoint.x <= olderX) && (interPoint.x > point.x)) {
noOfIntersections++;
}
}
}
olderX = points[0].x;
olderY = points[0].y;
}
if (noOfIntersections % 2 == 0) {
result = FALSE;
} else {
result = TRUE;
}
return result;
}
from typing import Iterable
def pnpoly(verts, x, y):
#check if x and/or y is iterable
xit, yit = isinstance(x, Iterable), isinstance(y, Iterable)
#if not iterable, make an iterable of length 1
X = x if xit else (x, )
Y = y if yit else (y, )
#store verts length as a range to juggle j
r = range(len(verts))
#final results if x or y is iterable
results = []
#traverse x and y coordinates
for xp in X:
for yp in Y:
c = 0 #reset c at every new position
for i in r:
j = r[i-1] #set j to position before i
#store a few arguments to shorten the if statement
yneq = (verts[i][1] > yp) != (verts[j][1] > yp)
xofs, yofs = (verts[j][0] - verts[i][0]), (verts[j][1] - verts[i][1])
#if we have crossed a line, increment c
if (yneq and (xp < xofs * (yp - verts[i][1]) / yofs + verts[i][0])):
c += 1
#if c is odd store the coordinates
if c%2:
results.append((xp, yp))
#return either coordinates or a bool, depending if x or y was an iterable
return results if (xit or yit) else bool(c%2)
这个python版本是通用的。您可以为True/False结果输入单个x和单个y值,也可以使用x和y的范围来遍历整个点网格。如果使用范围,则返回所有True点的x/y对列表。vertices参数需要一个由x/y对组成的二维Iterable,例如:[(x1,y1), (x2,y2),…]
使用示例:
vertices = [(25,25), (75,25), (75,75), (25,75)]
pnpoly(vertices, 50, 50) #True
pnpoly(vertices, range(100), range(100)) #[(25,25), (25,26), (25,27), ...]
实际上,这些都可以。
pnpoly(vertices, 50, range(100)) #check 0 to 99 y at x of 50
pnpoly(vertices, range(100), 50) #check 0 to 99 x at y of 50
没有什么比归纳定义问题更美好的了。为了完整起见,你在序言中有一个版本,它可能也澄清了光线投射背后的思想:
基于仿真的简化算法在http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
一些helper谓词:
exor(A,B):- \+A,B;A,\+B.
in_range(Coordinate,CA,CB) :- exor((CA>Coordinate),(CB>Coordinate)).
inside(false).
inside(_,[_|[]]).
inside(X:Y, [X1:Y1,X2:Y2|R]) :- in_range(Y,Y1,Y2), X > ( ((X2-X1)*(Y-Y1))/(Y2-Y1) + X1),toggle_ray, inside(X:Y, [X2:Y2|R]); inside(X:Y, [X2:Y2|R]).
get_line(_,_,[]).
get_line([XA:YA,XB:YB],[X1:Y1,X2:Y2|R]):- [XA:YA,XB:YB]=[X1:Y1,X2:Y2]; get_line([XA:YA,XB:YB],[X2:Y2|R]).
给定两点a和B的直线(直线(a,B))方程为:
(YB-YA)
Y - YA = ------- * (X - XA)
(XB-YB)
It is important that the direction of rotation for the line is setted to clock-wise for boundaries and anti-clock-wise for holes. We are going to check whether the point (X,Y), i.e the tested point is at the left half-plane of our line (it is a matter of taste, it could also be the right side, but also the direction of boundaries lines has to be changed in that case), this is to project the ray from the point to the right (or left) and acknowledge the intersection with the line. We have chosen to project the ray in the horizontal direction (again it is a matter of taste, it could also be done in vertical with similar restrictions), so we have:
(XB-XA)
X < ------- * (Y - YA) + XA
(YB-YA)
Now we need to know if the point is at the left (or right) side of the line segment only, not the entire plane, so we need to restrict the search only to this segment, but this is easy since to be inside the segment only one point in the line can be higher than Y in the vertical axis. As this is a stronger restriction it needs to be the first to check, so we take first only those lines meeting this requirement and then check its possition. By the Jordan Curve theorem any ray projected to a polygon must intersect at an even number of lines. So we are done, we will throw the ray to the right and then everytime it intersects a line, toggle its state. However in our implementation we are goint to check the lenght of the bag of solutions meeting the given restrictions and decide the innership upon it. for each line in the polygon this have to be done.
is_left_half_plane(_,[],[],_).
is_left_half_plane(X:Y,[XA:YA,XB:YB], [[X1:Y1,X2:Y2]|R], Test) :- [XA:YA, XB:YB] = [X1:Y1, X2:Y2], call(Test, X , (((XB - XA) * (Y - YA)) / (YB - YA) + XA));
is_left_half_plane(X:Y, [XA:YA, XB:YB], R, Test).
in_y_range_at_poly(Y,[XA:YA,XB:YB],Polygon) :- get_line([XA:YA,XB:YB],Polygon), in_range(Y,YA,YB).
all_in_range(Coordinate,Polygon,Lines) :- aggregate(bag(Line), in_y_range_at_poly(Coordinate,Line,Polygon), Lines).
traverses_ray(X:Y, Lines, Count) :- aggregate(bag(Line), is_left_half_plane(X:Y, Line, Lines, <), IntersectingLines), length(IntersectingLines, Count).
% This is the entry point predicate
inside_poly(X:Y,Polygon,Answer) :- all_in_range(Y,Polygon,Lines), traverses_ray(X:Y, Lines, Count), (1 is mod(Count,2)->Answer=inside;Answer=outside).
令人惊讶的是之前没有人提出这个问题,但是对于需要数据库的实用主义者来说:MongoDB对Geo查询提供了出色的支持,包括这个查询。
你需要的是:
db.neighborhoods。findOne({geometry: {$geoIntersects: {$geometry: { type: "Point",坐标:["经度","纬度"]}}} })
communities是存储一个或多个标准GeoJson格式多边形的集合。如果查询返回null,则表示不相交,否则为。
这里有详细的记录: https://docs.mongodb.com/manual/tutorial/geospatial-tutorial/
在330个不规则多边形网格中,超过6000个点分类的性能不到一分钟,没有任何优化,包括用各自的多边形更新文档的时间。
对于检测多边形上的命中,我们需要测试两件事:
如果点在多边形区域内。(可通过Ray-Casting算法实现) 如果点在多边形边界上(可以用与在折线(线)上检测点相同的算法来完成)。
推荐文章
- 确定记录是否存在的最快方法
- 阅读GHC核心
- Python: List vs Dict用于查找表
- 为什么MATLAB的矩阵乘法运算这么快?
- for循环和for-each循环在性能上有区别吗?
- 就性能而言,使用std::memcpy()还是std::copy()更好?
- 什么时候我应该(不)想要在我的代码中使用熊猫apply() ?
- 如何加速gwt编译器?
- MySQL OR与IN性能
- 应该……接住环内还是环外?
- 哪个更快/最好?SELECT *或SELECT columnn1, colum2, column3等
- 加快R中的循环操作
- INT和VARCHAR主键之间有真正的性能差异吗?
- c++标准是否要求iostreams的性能很差,或者我只是在处理一个糟糕的实现?
- 大概的成本访问各种缓存和主存储器?