我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
David Segond's answer is pretty much the standard general answer, and Richard T's is the most common optimization, though therre are some others. Other strong optimizations are based on less general solutions. For example if you are going to check the same polygon with lots of points, triangulating the polygon can speed things up hugely as there are a number of very fast TIN searching algorithms. Another is if the polygon and points are on a limited plane at low resolution, say a screen display, you can paint the polygon onto a memory mapped display buffer in a given colour, and check the color of a given pixel to see if it lies in the polygons.
像许多优化一样,这些优化是基于特定情况而不是一般情况,并且基于摊销时间而不是单次使用产生效益。
在这个领域工作,我发现约瑟夫·奥鲁克斯的《计算几何》在C' ISBN 0-521-44034-3是一个很大的帮助。
其他回答
简单的解决方案是将多边形划分为三角形,并按这里解释的那样对三角形进行测试
如果你的多边形是凸多边形,可能有更好的方法。把这个多边形看作是无限条线的集合。每一行将空间一分为二。对于每一个点,很容易判断它是在直线的一边还是另一边。如果一个点在所有直线的同一侧,那么它在多边形内。
Scala版本的解决方案由nirg(假设边界矩形预检查是单独完成的):
def inside(p: Point, polygon: Array[Point], bounds: Bounds): Boolean = {
val length = polygon.length
@tailrec
def oddIntersections(i: Int, j: Int, tracker: Boolean): Boolean = {
if (i == length)
tracker
else {
val intersects = (polygon(i).y > p.y) != (polygon(j).y > p.y) && p.x < (polygon(j).x - polygon(i).x) * (p.y - polygon(i).y) / (polygon(j).y - polygon(i).y) + polygon(i).x
oddIntersections(i + 1, i, if (intersects) !tracker else tracker)
}
}
oddIntersections(0, length - 1, tracker = false)
}
我认为这是迄今为止所有答案中最简洁的一个。
例如,假设我们有一个多边形,它带有多边形凹,看起来像这样:
大多边形顶点的二维坐标为
[[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
方框顶点的坐标为
[[248, 518], [336, 510], [341, 614], [250, 620]]
空心三角形顶点的坐标为
[[416, 531], [505, 517], [495, 616]]
假设我们想要测试两个点[296,557]和[422,730],如果它们在红色区域内(不包括边缘)。如果我们定位这两个点,它将是这样的:
显然,[296,557]不在读取区域内,而[422,730]在。
我的解决方案是基于圈数算法。下面是我只使用numpy的4行python代码:
def detect(points, *polygons):
import numpy as np
endpoint1 = np.r_[tuple(np.roll(p, 1, 0) for p in polygons)][:, None] - points
endpoint2 = np.r_[polygons][:, None] - points
p1, p2 = np.cross(endpoint1, endpoint2), np.einsum('...i,...i', endpoint1, endpoint2)
return ~((p1.sum(0) < 0) ^ (abs(np.arctan2(p1, p2).sum(0)) > np.pi) | ((p1 == 0) & (p2 <= 0)).any(0))
要测试实现:
points = [[296, 557], [422, 730]]
polygon1 = [[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
polygon2 = [[248, 518], [336, 510], [341, 614], [250, 620]]
polygon3 = [[416, 531], [505, 517], [495, 616]]
print(detect(points, polygon1, polygon2, polygon3))
输出:
[False True]
David Segond's answer is pretty much the standard general answer, and Richard T's is the most common optimization, though therre are some others. Other strong optimizations are based on less general solutions. For example if you are going to check the same polygon with lots of points, triangulating the polygon can speed things up hugely as there are a number of very fast TIN searching algorithms. Another is if the polygon and points are on a limited plane at low resolution, say a screen display, you can paint the polygon onto a memory mapped display buffer in a given colour, and check the color of a given pixel to see if it lies in the polygons.
像许多优化一样,这些优化是基于特定情况而不是一般情况,并且基于摊销时间而不是单次使用产生效益。
在这个领域工作,我发现约瑟夫·奥鲁克斯的《计算几何》在C' ISBN 0-521-44034-3是一个很大的帮助。
这个问题很有趣。我有另一个可行的想法,不同于这篇文章的其他答案。其原理是利用角度之和来判断目标是在内部还是外部。也就是圈数。
设x为目标点。让数组[0,1,....N]是该区域的所有点。用一条线将目标点与每一个边界点连接起来。如果目标点在这个区域内。所有角的和是360度。如果不是,角度将小于360度。
参考这张图来对这个概念有一个基本的了解:
我的算法假设顺时针是正方向。这是一个潜在的输入:
[[-122.402015, 48.225216], [-117.032049, 48.999931], [-116.919132, 45.995175], [-124.079107, 46.267259], [-124.717175, 48.377557], [-122.92315, 47.047963], [-122.402015, 48.225216]]
下面是实现这个想法的python代码:
def isInside(self, border, target):
degree = 0
for i in range(len(border) - 1):
a = border[i]
b = border[i + 1]
# calculate distance of vector
A = getDistance(a[0], a[1], b[0], b[1]);
B = getDistance(target[0], target[1], a[0], a[1])
C = getDistance(target[0], target[1], b[0], b[1])
# calculate direction of vector
ta_x = a[0] - target[0]
ta_y = a[1] - target[1]
tb_x = b[0] - target[0]
tb_y = b[1] - target[1]
cross = tb_y * ta_x - tb_x * ta_y
clockwise = cross < 0
# calculate sum of angles
if(clockwise):
degree = degree + math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
else:
degree = degree - math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
if(abs(round(degree) - 360) <= 3):
return True
return False
推荐文章
- 确定记录是否存在的最快方法
- 阅读GHC核心
- Python: List vs Dict用于查找表
- 为什么MATLAB的矩阵乘法运算这么快?
- for循环和for-each循环在性能上有区别吗?
- 就性能而言,使用std::memcpy()还是std::copy()更好?
- 什么时候我应该(不)想要在我的代码中使用熊猫apply() ?
- 如何加速gwt编译器?
- MySQL OR与IN性能
- 应该……接住环内还是环外?
- 哪个更快/最好?SELECT *或SELECT columnn1, colum2, column3等
- 加快R中的循环操作
- INT和VARCHAR主键之间有真正的性能差异吗?
- c++标准是否要求iostreams的性能很差,或者我只是在处理一个糟糕的实现?
- 大概的成本访问各种缓存和主存储器?