我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
为了完整性,这里是nirg提供的算法的lua实现,由Mecki讨论:
function pnpoly(area, test)
local inside = false
local tx, ty = table.unpack(test)
local j = #area
for i=1, #area do
local vxi, vyi = table.unpack(area[i])
local vxj, vyj = table.unpack(area[j])
if (vyi > ty) ~= (vyj > ty)
and tx < (vxj - vxi)*(ty - vyi)/(vyj - vyi) + vxi
then
inside = not inside
end
j = i
end
return inside
end
变量区域是一个点的表,这些点依次存储为2D表。例子:
> A = {{2, 1}, {1, 2}, {15, 3}, {3, 4}, {5, 3}, {4, 1.5}}
> T = {2, 1.1}
> pnpoly(A, T)
true
GitHub Gist的链接。
其他回答
这似乎在R中工作(为丑陋道歉,希望看到更好的版本!)。
pnpoly <- function(nvert,vertx,verty,testx,testy){
c <- FALSE
j <- nvert
for (i in 1:nvert){
if( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i])*(testy-verty[i])/(verty[j]-verty[i])+vertx[i]))
{c <- !c}
j <- i}
return(c)}
我知道这是旧的,但这里是一个在Cocoa实现的光线投射算法,如果有人感兴趣的话。不确定这是最有效的方法,但它可能会帮助别人。
- (BOOL)shape:(NSBezierPath *)path containsPoint:(NSPoint)point
{
NSBezierPath *currentPath = [path bezierPathByFlatteningPath];
BOOL result;
float aggregateX = 0; //I use these to calculate the centroid of the shape
float aggregateY = 0;
NSPoint firstPoint[1];
[currentPath elementAtIndex:0 associatedPoints:firstPoint];
float olderX = firstPoint[0].x;
float olderY = firstPoint[0].y;
NSPoint interPoint;
int noOfIntersections = 0;
for (int n = 0; n < [currentPath elementCount]; n++) {
NSPoint points[1];
[currentPath elementAtIndex:n associatedPoints:points];
aggregateX += points[0].x;
aggregateY += points[0].y;
}
for (int n = 0; n < [currentPath elementCount]; n++) {
NSPoint points[1];
[currentPath elementAtIndex:n associatedPoints:points];
//line equations in Ax + By = C form
float _A_FOO = (aggregateY/[currentPath elementCount]) - point.y;
float _B_FOO = point.x - (aggregateX/[currentPath elementCount]);
float _C_FOO = (_A_FOO * point.x) + (_B_FOO * point.y);
float _A_BAR = olderY - points[0].y;
float _B_BAR = points[0].x - olderX;
float _C_BAR = (_A_BAR * olderX) + (_B_BAR * olderY);
float det = (_A_FOO * _B_BAR) - (_A_BAR * _B_FOO);
if (det != 0) {
//intersection points with the edges
float xIntersectionPoint = ((_B_BAR * _C_FOO) - (_B_FOO * _C_BAR)) / det;
float yIntersectionPoint = ((_A_FOO * _C_BAR) - (_A_BAR * _C_FOO)) / det;
interPoint = NSMakePoint(xIntersectionPoint, yIntersectionPoint);
if (olderX <= points[0].x) {
//doesn't matter in which direction the ray goes, so I send it right-ward.
if ((interPoint.x >= olderX && interPoint.x <= points[0].x) && (interPoint.x > point.x)) {
noOfIntersections++;
}
} else {
if ((interPoint.x >= points[0].x && interPoint.x <= olderX) && (interPoint.x > point.x)) {
noOfIntersections++;
}
}
}
olderX = points[0].x;
olderY = points[0].y;
}
if (noOfIntersections % 2 == 0) {
result = FALSE;
} else {
result = TRUE;
}
return result;
}
这个问题的大多数答案并没有很好地处理所有的极端情况。以下是一些微妙的极端情况: 这是一个javascript版本,所有角落的情况都得到了很好的处理。
/** Get relationship between a point and a polygon using ray-casting algorithm
* @param {{x:number, y:number}} P: point to check
* @param {{x:number, y:number}[]} polygon: the polygon
* @returns -1: outside, 0: on edge, 1: inside
*/
function relationPP(P, polygon) {
const between = (p, a, b) => p >= a && p <= b || p <= a && p >= b
let inside = false
for (let i = polygon.length-1, j = 0; j < polygon.length; i = j, j++) {
const A = polygon[i]
const B = polygon[j]
// corner cases
if (P.x == A.x && P.y == A.y || P.x == B.x && P.y == B.y) return 0
if (A.y == B.y && P.y == A.y && between(P.x, A.x, B.x)) return 0
if (between(P.y, A.y, B.y)) { // if P inside the vertical range
// filter out "ray pass vertex" problem by treating the line a little lower
if (P.y == A.y && B.y >= A.y || P.y == B.y && A.y >= B.y) continue
// calc cross product `PA X PB`, P lays on left side of AB if c > 0
const c = (A.x - P.x) * (B.y - P.y) - (B.x - P.x) * (A.y - P.y)
if (c == 0) return 0
if ((A.y < B.y) == (c > 0)) inside = !inside
}
}
return inside? 1 : -1
}
我已经做了nirg的c++代码的Python实现:
输入
Bounding_points:组成多边形的节点。 Bounding_box_positions:筛选的候选点。(在我从边界框创建的实现中。 (输入为元组列表,格式为:[(xcord, ycord),…])
返回
多边形内的所有点。
def polygon_ray_casting(self, bounding_points, bounding_box_positions):
# Arrays containing the x- and y-coordinates of the polygon's vertices.
vertx = [point[0] for point in bounding_points]
verty = [point[1] for point in bounding_points]
# Number of vertices in the polygon
nvert = len(bounding_points)
# Points that are inside
points_inside = []
# For every candidate position within the bounding box
for idx, pos in enumerate(bounding_box_positions):
testx, testy = (pos[0], pos[1])
c = 0
for i in range(0, nvert):
j = i - 1 if i != 0 else nvert - 1
if( ((verty[i] > testy ) != (verty[j] > testy)) and
(testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) + vertx[i]) ):
c += 1
# If odd, that means that we are inside the polygon
if c % 2 == 1:
points_inside.append(pos)
return points_inside
同样,这个想法也是从这里得来的
Java版本:
public class Geocode {
private float latitude;
private float longitude;
public Geocode() {
}
public Geocode(float latitude, float longitude) {
this.latitude = latitude;
this.longitude = longitude;
}
public float getLatitude() {
return latitude;
}
public void setLatitude(float latitude) {
this.latitude = latitude;
}
public float getLongitude() {
return longitude;
}
public void setLongitude(float longitude) {
this.longitude = longitude;
}
}
public class GeoPolygon {
private ArrayList<Geocode> points;
public GeoPolygon() {
this.points = new ArrayList<Geocode>();
}
public GeoPolygon(ArrayList<Geocode> points) {
this.points = points;
}
public GeoPolygon add(Geocode geo) {
points.add(geo);
return this;
}
public boolean inside(Geocode geo) {
int i, j;
boolean c = false;
for (i = 0, j = points.size() - 1; i < points.size(); j = i++) {
if (((points.get(i).getLongitude() > geo.getLongitude()) != (points.get(j).getLongitude() > geo.getLongitude())) &&
(geo.getLatitude() < (points.get(j).getLatitude() - points.get(i).getLatitude()) * (geo.getLongitude() - points.get(i).getLongitude()) / (points.get(j).getLongitude() - points.get(i).getLongitude()) + points.get(i).getLatitude()))
c = !c;
}
return c;
}
}
推荐文章
- 确定记录是否存在的最快方法
- 阅读GHC核心
- Python: List vs Dict用于查找表
- 为什么MATLAB的矩阵乘法运算这么快?
- for循环和for-each循环在性能上有区别吗?
- 就性能而言,使用std::memcpy()还是std::copy()更好?
- 什么时候我应该(不)想要在我的代码中使用熊猫apply() ?
- 如何加速gwt编译器?
- MySQL OR与IN性能
- 应该……接住环内还是环外?
- 哪个更快/最好?SELECT *或SELECT columnn1, colum2, column3等
- 加快R中的循环操作
- INT和VARCHAR主键之间有真正的性能差异吗?
- c++标准是否要求iostreams的性能很差,或者我只是在处理一个糟糕的实现?
- 大概的成本访问各种缓存和主存储器?