我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
为了完整性,这里是nirg提供的算法的lua实现,由Mecki讨论:
function pnpoly(area, test)
local inside = false
local tx, ty = table.unpack(test)
local j = #area
for i=1, #area do
local vxi, vyi = table.unpack(area[i])
local vxj, vyj = table.unpack(area[j])
if (vyi > ty) ~= (vyj > ty)
and tx < (vxj - vxi)*(ty - vyi)/(vyj - vyi) + vxi
then
inside = not inside
end
j = i
end
return inside
end
变量区域是一个点的表,这些点依次存储为2D表。例子:
> A = {{2, 1}, {1, 2}, {15, 3}, {3, 4}, {5, 3}, {4, 1.5}}
> T = {2, 1.1}
> pnpoly(A, T)
true
GitHub Gist的链接。
其他回答
简单的解决方案是将多边形划分为三角形,并按这里解释的那样对三角形进行测试
如果你的多边形是凸多边形,可能有更好的方法。把这个多边形看作是无限条线的集合。每一行将空间一分为二。对于每一个点,很容易判断它是在直线的一边还是另一边。如果一个点在所有直线的同一侧,那么它在多边形内。
当我还是Michael Stonebraker手下的一名研究员时,我做了一些关于这方面的工作——你知道,就是那位提出了Ingres、PostgreSQL等的教授。
我们意识到最快的方法是首先做一个边界框,因为它非常快。如果它在边界框之外,它就在外面。否则,你就得做更辛苦的工作……
如果你想要一个伟大的算法,看看开源项目PostgreSQL的源代码的地理工作…
我想指出的是,我们从来没有深入了解过左撇子和右撇子(也可以表达为“内”和“外”的问题……
更新
BKB's link provided a good number of reasonable algorithms. I was working on Earth Science problems and therefore needed a solution that works in latitude/longitude, and it has the peculiar problem of handedness - is the area inside the smaller area or the bigger area? The answer is that the "direction" of the verticies matters - it's either left-handed or right handed and in this way you can indicate either area as "inside" any given polygon. As such, my work used solution three enumerated on that page.
此外,我的工作使用单独的函数进行“在线”测试。
...因为有人问:我们发现当垂直的数量超过某个数字时,边界盒测试是最好的——如果有必要,在做更长的测试之前做一个非常快速的测试……边界框是通过简单地将最大的x,最小的x,最大的y和最小的y放在一起,组成一个框的四个点来创建的……
另一个提示是:我们在网格空间中进行了所有更复杂的“调光”计算,都是在平面上的正点上进行的,然后重新投影到“真实”的经度/纬度上,从而避免了在经度180线交叉时和处理极地时可能出现的环绕错误。工作好了!
这个问题很有趣。我有另一个可行的想法,不同于这篇文章的其他答案。其原理是利用角度之和来判断目标是在内部还是外部。也就是圈数。
设x为目标点。让数组[0,1,....N]是该区域的所有点。用一条线将目标点与每一个边界点连接起来。如果目标点在这个区域内。所有角的和是360度。如果不是,角度将小于360度。
参考这张图来对这个概念有一个基本的了解:
我的算法假设顺时针是正方向。这是一个潜在的输入:
[[-122.402015, 48.225216], [-117.032049, 48.999931], [-116.919132, 45.995175], [-124.079107, 46.267259], [-124.717175, 48.377557], [-122.92315, 47.047963], [-122.402015, 48.225216]]
下面是实现这个想法的python代码:
def isInside(self, border, target):
degree = 0
for i in range(len(border) - 1):
a = border[i]
b = border[i + 1]
# calculate distance of vector
A = getDistance(a[0], a[1], b[0], b[1]);
B = getDistance(target[0], target[1], a[0], a[1])
C = getDistance(target[0], target[1], b[0], b[1])
# calculate direction of vector
ta_x = a[0] - target[0]
ta_y = a[1] - target[1]
tb_x = b[0] - target[0]
tb_y = b[1] - target[1]
cross = tb_y * ta_x - tb_x * ta_y
clockwise = cross < 0
# calculate sum of angles
if(clockwise):
degree = degree + math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
else:
degree = degree - math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
if(abs(round(degree) - 360) <= 3):
return True
return False
nirg的c#版本的答案在这里:我只分享代码。这可能会节省一些时间。
public static bool IsPointInPolygon(IList<Point> polygon, Point testPoint) {
bool result = false;
int j = polygon.Count() - 1;
for (int i = 0; i < polygon.Count(); i++) {
if (polygon[i].Y < testPoint.Y && polygon[j].Y >= testPoint.Y || polygon[j].Y < testPoint.Y && polygon[i].Y >= testPoint.Y) {
if (polygon[i].X + (testPoint.Y - polygon[i].Y) / (polygon[j].Y - polygon[i].Y) * (polygon[j].X - polygon[i].X) < testPoint.X) {
result = !result;
}
}
j = i;
}
return result;
}
我知道这是旧的,但这里是一个在Cocoa实现的光线投射算法,如果有人感兴趣的话。不确定这是最有效的方法,但它可能会帮助别人。
- (BOOL)shape:(NSBezierPath *)path containsPoint:(NSPoint)point
{
NSBezierPath *currentPath = [path bezierPathByFlatteningPath];
BOOL result;
float aggregateX = 0; //I use these to calculate the centroid of the shape
float aggregateY = 0;
NSPoint firstPoint[1];
[currentPath elementAtIndex:0 associatedPoints:firstPoint];
float olderX = firstPoint[0].x;
float olderY = firstPoint[0].y;
NSPoint interPoint;
int noOfIntersections = 0;
for (int n = 0; n < [currentPath elementCount]; n++) {
NSPoint points[1];
[currentPath elementAtIndex:n associatedPoints:points];
aggregateX += points[0].x;
aggregateY += points[0].y;
}
for (int n = 0; n < [currentPath elementCount]; n++) {
NSPoint points[1];
[currentPath elementAtIndex:n associatedPoints:points];
//line equations in Ax + By = C form
float _A_FOO = (aggregateY/[currentPath elementCount]) - point.y;
float _B_FOO = point.x - (aggregateX/[currentPath elementCount]);
float _C_FOO = (_A_FOO * point.x) + (_B_FOO * point.y);
float _A_BAR = olderY - points[0].y;
float _B_BAR = points[0].x - olderX;
float _C_BAR = (_A_BAR * olderX) + (_B_BAR * olderY);
float det = (_A_FOO * _B_BAR) - (_A_BAR * _B_FOO);
if (det != 0) {
//intersection points with the edges
float xIntersectionPoint = ((_B_BAR * _C_FOO) - (_B_FOO * _C_BAR)) / det;
float yIntersectionPoint = ((_A_FOO * _C_BAR) - (_A_BAR * _C_FOO)) / det;
interPoint = NSMakePoint(xIntersectionPoint, yIntersectionPoint);
if (olderX <= points[0].x) {
//doesn't matter in which direction the ray goes, so I send it right-ward.
if ((interPoint.x >= olderX && interPoint.x <= points[0].x) && (interPoint.x > point.x)) {
noOfIntersections++;
}
} else {
if ((interPoint.x >= points[0].x && interPoint.x <= olderX) && (interPoint.x > point.x)) {
noOfIntersections++;
}
}
}
olderX = points[0].x;
olderY = points[0].y;
}
if (noOfIntersections % 2 == 0) {
result = FALSE;
} else {
result = TRUE;
}
return result;
}
推荐文章
- 确定记录是否存在的最快方法
- 阅读GHC核心
- Python: List vs Dict用于查找表
- 为什么MATLAB的矩阵乘法运算这么快?
- for循环和for-each循环在性能上有区别吗?
- 就性能而言,使用std::memcpy()还是std::copy()更好?
- 什么时候我应该(不)想要在我的代码中使用熊猫apply() ?
- 如何加速gwt编译器?
- MySQL OR与IN性能
- 应该……接住环内还是环外?
- 哪个更快/最好?SELECT *或SELECT columnn1, colum2, column3等
- 加快R中的循环操作
- INT和VARCHAR主键之间有真正的性能差异吗?
- c++标准是否要求iostreams的性能很差,或者我只是在处理一个糟糕的实现?
- 大概的成本访问各种缓存和主存储器?