我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。


当前回答

我认为这是迄今为止所有答案中最简洁的一个。

例如,假设我们有一个多边形,它带有多边形凹,看起来像这样:

大多边形顶点的二维坐标为

[[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]

方框顶点的坐标为

[[248, 518], [336, 510], [341, 614], [250, 620]]

空心三角形顶点的坐标为

[[416, 531], [505, 517], [495, 616]]

假设我们想要测试两个点[296,557]和[422,730],如果它们在红色区域内(不包括边缘)。如果我们定位这两个点,它将是这样的:

显然,[296,557]不在读取区域内,而[422,730]在。

我的解决方案是基于圈数算法。下面是我只使用numpy的4行python代码:

def detect(points, *polygons):
    import numpy as np
    endpoint1 = np.r_[tuple(np.roll(p, 1, 0) for p in polygons)][:, None] - points
    endpoint2 = np.r_[polygons][:, None] - points
    p1, p2 = np.cross(endpoint1, endpoint2), np.einsum('...i,...i', endpoint1, endpoint2)
    return ~((p1.sum(0) < 0) ^ (abs(np.arctan2(p1, p2).sum(0)) > np.pi) | ((p1 == 0) & (p2 <= 0)).any(0))

要测试实现:

points = [[296, 557], [422, 730]]
polygon1 = [[139, 483], [227, 792], [482, 849], [523, 670], [352, 330]]
polygon2 = [[248, 518], [336, 510], [341, 614], [250, 620]]
polygon3 = [[416, 531], [505, 517], [495, 616]]

print(detect(points, polygon1, polygon2, polygon3))

输出:

[False  True]

其他回答

nirg回答的Swift版本:

extension CGPoint {
    func isInsidePolygon(vertices: [CGPoint]) -> Bool {
        guard !vertices.isEmpty else { return false }
        var j = vertices.last!, c = false
        for i in vertices {
            let a = (i.y > y) != (j.y > y)
            let b = (x < (j.x - i.x) * (y - i.y) / (j.y - i.y) + i.x)
            if a && b { c = !c }
            j = i
        }
        return c
    }
}

以下是M. Katz基于Nirg方法的答案的JavaScript变体:

function pointIsInPoly(p, polygon) {
    var isInside = false;
    var minX = polygon[0].x, maxX = polygon[0].x;
    var minY = polygon[0].y, maxY = polygon[0].y;
    for (var n = 1; n < polygon.length; n++) {
        var q = polygon[n];
        minX = Math.min(q.x, minX);
        maxX = Math.max(q.x, maxX);
        minY = Math.min(q.y, minY);
        maxY = Math.max(q.y, maxY);
    }

    if (p.x < minX || p.x > maxX || p.y < minY || p.y > maxY) {
        return false;
    }

    var i = 0, j = polygon.length - 1;
    for (i, j; i < polygon.length; j = i++) {
        if ( (polygon[i].y > p.y) != (polygon[j].y > p.y) &&
                p.x < (polygon[j].x - polygon[i].x) * (p.y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x ) {
            isInside = !isInside;
        }
    }

    return isInside;
}

答案取决于你用的是简单多边形还是复杂多边形。简单多边形不能有任何线段交点。所以它们可以有洞,但线不能交叉。复杂区域可以有直线交点,所以它们可以有重叠的区域,或者只有一点相交的区域。

对于简单多边形,最好的算法是光线投射(交叉数)算法。对于复杂多边形,该算法不检测重叠区域内的点。所以对于复杂多边形你必须使用圈数算法。

下面是一篇用C实现这两种算法的优秀文章。我试过了,效果不错。

http://geomalgorithms.com/a03-_inclusion.html

这大概是一个稍微不那么优化的C代码版本,它来自于这个页面。

我的c++版本使用std::vector<std::pair<double, double>>和两个double作为x和y。逻辑应该与原始C代码完全相同,但我发现我的更容易阅读。我不能为表演说话。

bool point_in_poly(std::vector<std::pair<double, double>>& verts, double point_x, double point_y)
{
    bool in_poly = false;
    auto num_verts = verts.size();
    for (int i = 0, j = num_verts - 1; i < num_verts; j = i++) {
        double x1 = verts[i].first;
        double y1 = verts[i].second;
        double x2 = verts[j].first;
        double y2 = verts[j].second;

        if (((y1 > point_y) != (y2 > point_y)) &&
            (point_x < (x2 - x1) * (point_y - y1) / (y2 - y1) + x1))
            in_poly = !in_poly;
    }
    return in_poly;
}

原始的C代码是

int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
  int i, j, c = 0;
  for (i = 0, j = nvert-1; i < nvert; j = i++) {
    if ( ((verty[i]>testy) != (verty[j]>testy)) &&
     (testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
       c = !c;
  }
  return c;
}

我已经做了nirg的c++代码的Python实现:

输入

Bounding_points:组成多边形的节点。 Bounding_box_positions:筛选的候选点。(在我从边界框创建的实现中。 (输入为元组列表,格式为:[(xcord, ycord),…])

返回

多边形内的所有点。

def polygon_ray_casting(self, bounding_points, bounding_box_positions):
    # Arrays containing the x- and y-coordinates of the polygon's vertices.
    vertx = [point[0] for point in bounding_points]
    verty = [point[1] for point in bounding_points]
    # Number of vertices in the polygon
    nvert = len(bounding_points)
    # Points that are inside
    points_inside = []

    # For every candidate position within the bounding box
    for idx, pos in enumerate(bounding_box_positions):
        testx, testy = (pos[0], pos[1])
        c = 0
        for i in range(0, nvert):
            j = i - 1 if i != 0 else nvert - 1
            if( ((verty[i] > testy ) != (verty[j] > testy))   and
                    (testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) + vertx[i]) ):
                c += 1
        # If odd, that means that we are inside the polygon
        if c % 2 == 1: 
            points_inside.append(pos)


    return points_inside

同样,这个想法也是从这里得来的