我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
计算点p与每个多边形顶点之间的有向角和。如果总倾斜角是360度,那么这个点在里面。如果总数为0,则点在外面。
我更喜欢这种方法,因为它更健壮,对数值精度的依赖更小。
计算交集数量的均匀性的方法是有限的,因为你可以在计算交集数量的过程中“击中”一个顶点。
编辑:顺便说一下,这种方法适用于凹凸多边形。
编辑:我最近在维基百科上找到了一篇关于这个话题的完整文章。
其他回答
我已经做了nirg的c++代码的Python实现:
输入
Bounding_points:组成多边形的节点。 Bounding_box_positions:筛选的候选点。(在我从边界框创建的实现中。 (输入为元组列表,格式为:[(xcord, ycord),…])
返回
多边形内的所有点。
def polygon_ray_casting(self, bounding_points, bounding_box_positions):
# Arrays containing the x- and y-coordinates of the polygon's vertices.
vertx = [point[0] for point in bounding_points]
verty = [point[1] for point in bounding_points]
# Number of vertices in the polygon
nvert = len(bounding_points)
# Points that are inside
points_inside = []
# For every candidate position within the bounding box
for idx, pos in enumerate(bounding_box_positions):
testx, testy = (pos[0], pos[1])
c = 0
for i in range(0, nvert):
j = i - 1 if i != 0 else nvert - 1
if( ((verty[i] > testy ) != (verty[j] > testy)) and
(testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) + vertx[i]) ):
c += 1
# If odd, that means that we are inside the polygon
if c % 2 == 1:
points_inside.append(pos)
return points_inside
同样,这个想法也是从这里得来的
David Segond's answer is pretty much the standard general answer, and Richard T's is the most common optimization, though therre are some others. Other strong optimizations are based on less general solutions. For example if you are going to check the same polygon with lots of points, triangulating the polygon can speed things up hugely as there are a number of very fast TIN searching algorithms. Another is if the polygon and points are on a limited plane at low resolution, say a screen display, you can paint the polygon onto a memory mapped display buffer in a given colour, and check the color of a given pixel to see if it lies in the polygons.
像许多优化一样,这些优化是基于特定情况而不是一般情况,并且基于摊销时间而不是单次使用产生效益。
在这个领域工作,我发现约瑟夫·奥鲁克斯的《计算几何》在C' ISBN 0-521-44034-3是一个很大的帮助。
在大多数情况下,这是一个比其他算法都快的算法。
它又新又雅致。我们花费O(n * log(n))时间构建一个表,允许我们在O(log(n) + k)时间内测试多边形中的点。
与光线跟踪或角度不同,使用扫描光束表可以更快地对同一多边形进行多次检查。我们必须预先构建一个扫描束活动边表,这是大多数代码正在做的事情。
We calculate the scanbeam and the active edges for that position in the y-direction. We make a list of points sorted by their y-component and we iterate through this list, for two events. Start-Y and End-Y, we track the active edges as we process the list. We process the events in order and for each scanbeam we record the y-value of the event and the active edges at each event (events being start-y and end-y) but we only record these when our event-y is different than last time (so everything at the event point is processed before we mark it in our table).
我们得到我们的表格:
[] p6p5、p6p7 p6p5, p6p7, p2p3, p2p1 p6p7, p5p4, p2p3, p3p1 p7p8, p5p4, p2p3, p2p1 p7p8, p5p4, p3p4, p2p1 p7p8 p2p1、 p7p8、p1p0 p8p0、p1p0 []
在构建该表之后,实际执行工作的代码只有几行。
注意:这里的代码使用复数值作为点。所以。real是。x。imag是。y。
def point_in_scantable(actives_table, events, xi, point):
beam = bisect(events, point.imag) - 1 # Binary search in sorted array.
actives_at_y = actives_table[beam]
total = sum([point.real > xi(e, point.imag) for e in actives_at_y])
return bool(total % 2)
我们对事件进行二进制搜索,以找到特定值的actives_at_y。对于在y点的所有活动,我们计算在我们点的特定y点的x段值。每次x截距大于点的x分量时加1。然后对总数乘以2。(这是偶数-奇数填充规则,你可以很容易地适应任何其他填充规则)。
完整的代码:
from bisect import bisect
def build_edge_list(polygon):
edge_list = []
for i in range(1, len(polygon)):
if (polygon[i].imag, polygon[i].real) < (polygon[i - 1].imag, polygon[i - 1].real):
edge_list.append((polygon[i], i))
edge_list.append((polygon[i - 1], ~i))
else:
edge_list.append((polygon[i], ~i))
edge_list.append((polygon[i - 1], i))
def sort_key(e):
return e[0].imag, e[0].real, ~e[1]
edge_list.sort(key=sort_key)
return edge_list
def build_scanbeam(edge_list):
actives_table = []
events = []
y = -float("inf")
actives = []
for pt, index in edge_list:
if y != pt.imag:
actives_table.append(list(actives))
events.append(y)
if index >= 0:
actives.append(index)
else:
actives.remove(~index)
y = pt.imag
return actives_table, events
def point_in_polygon(polygon, point):
def x_intercept(e, y):
pt0 = polygon[e-1]
pt1 = polygon[e]
if pt1.real - pt0.real == 0:
return pt0.real
m = (pt1.imag - pt0.imag) / (pt1.real - pt0.real)
b = pt0.imag - (m * pt0.real)
return (y - b) / m
edge_list = build_edge_list(polygon)
actives_table, events = build_scanbeam(edge_list)
try:
if len(point):
return [point_in_scantable(actives_table, events, x_intercept, p) for p in point]
except TypeError:
return point_in_scantable(actives_table, events, x_intercept, point)
def point_in_scantable(actives_table, events, xi, point):
beam = bisect(events, point.imag) - 1 # Binary search in sorted array.
actives_at_y = actives_table[beam]
total = sum([point.real > xi(e, point.imag) for e in actives_at_y])
return bool(total % 2)
如果忽略,则扫描表的构建时间为O(n*log(n))。我们实际上是在O(log(n) + k)时间内查到的。其中n是多边形中段数的大小,k是该多边形中典型的活动边数。其他的光线追踪方法实际上需要O(n)时间。每次我们检查一个点,它迭代整个多边形。所以即使有这个明显的次优实现,它也轻而易举地打败了其他所有的。
There's a few performance tricks that could be done, for example, we can lower the time complexity to O(log(n) + log(k)) time. To do this we would implement Bentley-Ottmann into the sweep line, and rather than processing the intersections as different events, we split the lines at the intersections. We then also sort the active edges by their x-intercepts. We then know that no intersections occur during a scanbeam and since we sorted our segments (taking care to order them correctly within the scanbeam even if they start at the same initial point (you need to look at the slopes, or just compare midpoints of the segments). We then have a sorted intersection-less actives lists scanbeam table which means we can binary search into active edge list as well. Though that sounds like a lot of work for a value of k which is going to be typically 2 or maybe 4.
此外,由于这基本上变成了一个查找表和一些x截距的最小计算,它更能用GPU完成。你不再需要在多边形上循环了。所以你可以用numpy这样的东西来大量计算这些点,这样你就可以一次做所有的计算,从而提高性能。
以下是M. Katz基于Nirg方法的答案的JavaScript变体:
function pointIsInPoly(p, polygon) {
var isInside = false;
var minX = polygon[0].x, maxX = polygon[0].x;
var minY = polygon[0].y, maxY = polygon[0].y;
for (var n = 1; n < polygon.length; n++) {
var q = polygon[n];
minX = Math.min(q.x, minX);
maxX = Math.max(q.x, maxX);
minY = Math.min(q.y, minY);
maxY = Math.max(q.y, maxY);
}
if (p.x < minX || p.x > maxX || p.y < minY || p.y > maxY) {
return false;
}
var i = 0, j = polygon.length - 1;
for (i, j; i < polygon.length; j = i++) {
if ( (polygon[i].y > p.y) != (polygon[j].y > p.y) &&
p.x < (polygon[j].x - polygon[i].x) * (p.y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x ) {
isInside = !isInside;
}
}
return isInside;
}
令人惊讶的是之前没有人提出这个问题,但是对于需要数据库的实用主义者来说:MongoDB对Geo查询提供了出色的支持,包括这个查询。
你需要的是:
db.neighborhoods。findOne({geometry: {$geoIntersects: {$geometry: { type: "Point",坐标:["经度","纬度"]}}} })
communities是存储一个或多个标准GeoJson格式多边形的集合。如果查询返回null,则表示不相交,否则为。
这里有详细的记录: https://docs.mongodb.com/manual/tutorial/geospatial-tutorial/
在330个不规则多边形网格中,超过6000个点分类的性能不到一分钟,没有任何优化,包括用各自的多边形更新文档的时间。
推荐文章
- 在SQL Server上使用varchar(MAX) vs TEXT
- .toArray(new MyClass[0]) or .toArray(new MyClass[myList.size()])?
- 是什么导致JNI调用变慢?
- 检查属性是否有属性
- 如何快速清除JavaScript对象?
- Node.js vs .Net性能
- 如果使用if-return-return或if-else-return?
- 为什么MYSQL的高LIMIT偏移量减慢查询?
- SQL JOIN vs IN性能?
- 如何产生类似ios7模糊视图的效果?
- GraphViz -如何连接子图?
- 如何找到Java堆大小和内存使用(Linux)?
- 如何在HTML5中改变视频的播放速度?
- 我如何提高ASP。NET MVC应用程序性能?
- 列表推导式和函数式函数比for循环更快吗?