我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。


当前回答

令人惊讶的是之前没有人提出这个问题,但是对于需要数据库的实用主义者来说:MongoDB对Geo查询提供了出色的支持,包括这个查询。

你需要的是:

db.neighborhoods。findOne({geometry: {$geoIntersects: {$geometry: { type: "Point",坐标:["经度","纬度"]}}} })

communities是存储一个或多个标准GeoJson格式多边形的集合。如果查询返回null,则表示不相交,否则为。

这里有详细的记录: https://docs.mongodb.com/manual/tutorial/geospatial-tutorial/

在330个不规则多边形网格中,超过6000个点分类的性能不到一分钟,没有任何优化,包括用各自的多边形更新文档的时间。

其他回答

我知道这是旧的,但这里是一个在Cocoa实现的光线投射算法,如果有人感兴趣的话。不确定这是最有效的方法,但它可能会帮助别人。

- (BOOL)shape:(NSBezierPath *)path containsPoint:(NSPoint)point
{
    NSBezierPath *currentPath = [path bezierPathByFlatteningPath];
    BOOL result;
    float aggregateX = 0; //I use these to calculate the centroid of the shape
    float aggregateY = 0;
    NSPoint firstPoint[1];
    [currentPath elementAtIndex:0 associatedPoints:firstPoint];
    float olderX = firstPoint[0].x;
    float olderY = firstPoint[0].y;
    NSPoint interPoint;
    int noOfIntersections = 0;

    for (int n = 0; n < [currentPath elementCount]; n++) {
        NSPoint points[1];
        [currentPath elementAtIndex:n associatedPoints:points];
        aggregateX += points[0].x;
        aggregateY += points[0].y;
    }

    for (int n = 0; n < [currentPath elementCount]; n++) {
        NSPoint points[1];

        [currentPath elementAtIndex:n associatedPoints:points];
        //line equations in Ax + By = C form
        float _A_FOO = (aggregateY/[currentPath elementCount]) - point.y;  
        float _B_FOO = point.x - (aggregateX/[currentPath elementCount]);
        float _C_FOO = (_A_FOO * point.x) + (_B_FOO * point.y);

        float _A_BAR = olderY - points[0].y;
        float _B_BAR = points[0].x - olderX;
        float _C_BAR = (_A_BAR * olderX) + (_B_BAR * olderY);

        float det = (_A_FOO * _B_BAR) - (_A_BAR * _B_FOO);
        if (det != 0) {
            //intersection points with the edges
            float xIntersectionPoint = ((_B_BAR * _C_FOO) - (_B_FOO * _C_BAR)) / det;
            float yIntersectionPoint = ((_A_FOO * _C_BAR) - (_A_BAR * _C_FOO)) / det;
            interPoint = NSMakePoint(xIntersectionPoint, yIntersectionPoint);
            if (olderX <= points[0].x) {
                //doesn't matter in which direction the ray goes, so I send it right-ward.
                if ((interPoint.x >= olderX && interPoint.x <= points[0].x) && (interPoint.x > point.x)) {  
                    noOfIntersections++;
                }
            } else {
                if ((interPoint.x >= points[0].x && interPoint.x <= olderX) && (interPoint.x > point.x)) {
                     noOfIntersections++;
                } 
            }
        }
        olderX = points[0].x;
        olderY = points[0].y;
    }
    if (noOfIntersections % 2 == 0) {
        result = FALSE;
    } else {
        result = TRUE;
    }
    return result;
}

答案取决于你用的是简单多边形还是复杂多边形。简单多边形不能有任何线段交点。所以它们可以有洞,但线不能交叉。复杂区域可以有直线交点,所以它们可以有重叠的区域,或者只有一点相交的区域。

对于简单多边形,最好的算法是光线投射(交叉数)算法。对于复杂多边形,该算法不检测重叠区域内的点。所以对于复杂多边形你必须使用圈数算法。

下面是一篇用C实现这两种算法的优秀文章。我试过了,效果不错。

http://geomalgorithms.com/a03-_inclusion.html

这个问题很有趣。我有另一个可行的想法,不同于这篇文章的其他答案。其原理是利用角度之和来判断目标是在内部还是外部。也就是圈数。

设x为目标点。让数组[0,1,....N]是该区域的所有点。用一条线将目标点与每一个边界点连接起来。如果目标点在这个区域内。所有角的和是360度。如果不是,角度将小于360度。

参考这张图来对这个概念有一个基本的了解:

我的算法假设顺时针是正方向。这是一个潜在的输入:

[[-122.402015, 48.225216], [-117.032049, 48.999931], [-116.919132, 45.995175], [-124.079107, 46.267259], [-124.717175, 48.377557], [-122.92315, 47.047963], [-122.402015, 48.225216]]

下面是实现这个想法的python代码:

def isInside(self, border, target):
degree = 0
for i in range(len(border) - 1):
    a = border[i]
    b = border[i + 1]

    # calculate distance of vector
    A = getDistance(a[0], a[1], b[0], b[1]);
    B = getDistance(target[0], target[1], a[0], a[1])
    C = getDistance(target[0], target[1], b[0], b[1])

    # calculate direction of vector
    ta_x = a[0] - target[0]
    ta_y = a[1] - target[1]
    tb_x = b[0] - target[0]
    tb_y = b[1] - target[1]

    cross = tb_y * ta_x - tb_x * ta_y
    clockwise = cross < 0

    # calculate sum of angles
    if(clockwise):
        degree = degree + math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
    else:
        degree = degree - math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))

if(abs(round(degree) - 360) <= 3):
    return True
return False

下面是Rust版本的@nirg答案(Philipp Lenssen javascript版本) 我给出这个答案是因为我从这个网站得到了很多帮助,我翻译javascript版本rust作为一个练习,希望可以帮助一些人,最后一个原因是,在我的工作中,我会把这段代码翻译成一个wasm,以提高我的画布的性能,这是一个开始。我的英语很差……,请原谅我 `

pub struct Point {
    x: f32,
    y: f32,
}
pub fn point_is_in_poly(pt: Point, polygon: &Vec<Point>) -> bool {
    let mut is_inside = false;

    let max_x = polygon.iter().map(|pt| pt.x).reduce(f32::max).unwrap();
    let min_x = polygon.iter().map(|pt| pt.x).reduce(f32::min).unwrap();
    let max_y = polygon.iter().map(|pt| pt.y).reduce(f32::max).unwrap();
    let min_y = polygon.iter().map(|pt| pt.y).reduce(f32::min).unwrap();

    if pt.x < min_x || pt.x > max_x || pt.y < min_y || pt.y > max_y {
        return is_inside;
    }

    let len = polygon.len();
    let mut j = len - 1;

    for i in 0..len {
        let y_i_value = polygon[i].y > pt.y;
        let y_j_value = polygon[j].y > pt.y;
        let last_check = (polygon[j].x - polygon[i].x) * (pt.y - polygon[i].y)
            / (polygon[j].y - polygon[i].y)
            + polygon[i].x;
        if y_i_value != y_j_value && pt.x < last_check {
            is_inside = !is_inside;
        }
        j = i;
    }
    is_inside
}


let pt = Point {
    x: 1266.753,
    y: 97.655,
};
let polygon = vec![
    Point {
        x: 725.278,
        y: 203.586,
    },
    Point {
        x: 486.831,
        y: 441.931,
    },
    Point {
        x: 905.77,
        y: 445.241,
    },
    Point {
        x: 1026.649,
        y: 201.931,
    },
];
let pt1 = Point {
    x: 725.278,
    y: 203.586,
};
let pt2 = Point {
    x: 872.652,
    y: 321.103,
};
println!("{}", point_is_in_poly(pt, &polygon));// false
println!("{}", point_is_in_poly(pt1, &polygon)); // true
println!("{}", point_is_in_poly(pt2, &polygon));// true

`

在C语言的多边形测试中,有一个点没有使用光线投射。它可以用于重叠区域(自我交叉),请参阅use_holes参数。

/* math lib (defined below) */
static float dot_v2v2(const float a[2], const float b[2]);
static float angle_signed_v2v2(const float v1[2], const float v2[2]);
static void copy_v2_v2(float r[2], const float a[2]);

/* intersection function */
bool isect_point_poly_v2(const float pt[2], const float verts[][2], const unsigned int nr,
                         const bool use_holes)
{
    /* we do the angle rule, define that all added angles should be about zero or (2 * PI) */
    float angletot = 0.0;
    float fp1[2], fp2[2];
    unsigned int i;
    const float *p1, *p2;

    p1 = verts[nr - 1];

    /* first vector */
    fp1[0] = p1[0] - pt[0];
    fp1[1] = p1[1] - pt[1];

    for (i = 0; i < nr; i++) {
        p2 = verts[i];

        /* second vector */
        fp2[0] = p2[0] - pt[0];
        fp2[1] = p2[1] - pt[1];

        /* dot and angle and cross */
        angletot += angle_signed_v2v2(fp1, fp2);

        /* circulate */
        copy_v2_v2(fp1, fp2);
        p1 = p2;
    }

    angletot = fabsf(angletot);
    if (use_holes) {
        const float nested = floorf((angletot / (float)(M_PI * 2.0)) + 0.00001f);
        angletot -= nested * (float)(M_PI * 2.0);
        return (angletot > 4.0f) != ((int)nested % 2);
    }
    else {
        return (angletot > 4.0f);
    }
}

/* math lib */

static float dot_v2v2(const float a[2], const float b[2])
{
    return a[0] * b[0] + a[1] * b[1];
}

static float angle_signed_v2v2(const float v1[2], const float v2[2])
{
    const float perp_dot = (v1[1] * v2[0]) - (v1[0] * v2[1]);
    return atan2f(perp_dot, dot_v2v2(v1, v2));
}

static void copy_v2_v2(float r[2], const float a[2])
{
    r[0] = a[0];
    r[1] = a[1];
}

注意:这是一个不太理想的方法,因为它包含很多对atan2f的调用,但它可能会引起阅读这个线程的开发人员的兴趣(在我的测试中,它比使用线交方法慢23倍)。