我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
Obj-C版本nirg的答案与样本方法测试点。Nirg的回答对我很有效。
- (BOOL)isPointInPolygon:(NSArray *)vertices point:(CGPoint)test {
NSUInteger nvert = [vertices count];
NSInteger i, j, c = 0;
CGPoint verti, vertj;
for (i = 0, j = nvert-1; i < nvert; j = i++) {
verti = [(NSValue *)[vertices objectAtIndex:i] CGPointValue];
vertj = [(NSValue *)[vertices objectAtIndex:j] CGPointValue];
if (( (verti.y > test.y) != (vertj.y > test.y) ) &&
( test.x < ( vertj.x - verti.x ) * ( test.y - verti.y ) / ( vertj.y - verti.y ) + verti.x) )
c = !c;
}
return (c ? YES : NO);
}
- (void)testPoint {
NSArray *polygonVertices = [NSArray arrayWithObjects:
[NSValue valueWithCGPoint:CGPointMake(13.5, 41.5)],
[NSValue valueWithCGPoint:CGPointMake(42.5, 56.5)],
[NSValue valueWithCGPoint:CGPointMake(39.5, 69.5)],
[NSValue valueWithCGPoint:CGPointMake(42.5, 84.5)],
[NSValue valueWithCGPoint:CGPointMake(13.5, 100.0)],
[NSValue valueWithCGPoint:CGPointMake(6.0, 70.5)],
nil
];
CGPoint tappedPoint = CGPointMake(23.0, 70.0);
if ([self isPointInPolygon:polygonVertices point:tappedPoint]) {
NSLog(@"YES");
} else {
NSLog(@"NO");
}
}
其他回答
这似乎在R中工作(为丑陋道歉,希望看到更好的版本!)。
pnpoly <- function(nvert,vertx,verty,testx,testy){
c <- FALSE
j <- nvert
for (i in 1:nvert){
if( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i])*(testy-verty[i])/(verty[j]-verty[i])+vertx[i]))
{c <- !c}
j <- i}
return(c)}
David Segond's answer is pretty much the standard general answer, and Richard T's is the most common optimization, though therre are some others. Other strong optimizations are based on less general solutions. For example if you are going to check the same polygon with lots of points, triangulating the polygon can speed things up hugely as there are a number of very fast TIN searching algorithms. Another is if the polygon and points are on a limited plane at low resolution, say a screen display, you can paint the polygon onto a memory mapped display buffer in a given colour, and check the color of a given pixel to see if it lies in the polygons.
像许多优化一样,这些优化是基于特定情况而不是一般情况,并且基于摊销时间而不是单次使用产生效益。
在这个领域工作,我发现约瑟夫·奥鲁克斯的《计算几何》在C' ISBN 0-521-44034-3是一个很大的帮助。
这大概是一个稍微不那么优化的C代码版本,它来自于这个页面。
我的c++版本使用std::vector<std::pair<double, double>>和两个double作为x和y。逻辑应该与原始C代码完全相同,但我发现我的更容易阅读。我不能为表演说话。
bool point_in_poly(std::vector<std::pair<double, double>>& verts, double point_x, double point_y)
{
bool in_poly = false;
auto num_verts = verts.size();
for (int i = 0, j = num_verts - 1; i < num_verts; j = i++) {
double x1 = verts[i].first;
double y1 = verts[i].second;
double x2 = verts[j].first;
double y2 = verts[j].second;
if (((y1 > point_y) != (y2 > point_y)) &&
(point_x < (x2 - x1) * (point_y - y1) / (y2 - y1) + x1))
in_poly = !in_poly;
}
return in_poly;
}
原始的C代码是
int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++) {
if ( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
c = !c;
}
return c;
}
计算点p与每个多边形顶点之间的有向角和。如果总倾斜角是360度,那么这个点在里面。如果总数为0,则点在外面。
我更喜欢这种方法,因为它更健壮,对数值精度的依赖更小。
计算交集数量的均匀性的方法是有限的,因为你可以在计算交集数量的过程中“击中”一个顶点。
编辑:顺便说一下,这种方法适用于凹凸多边形。
编辑:我最近在维基百科上找到了一篇关于这个话题的完整文章。
Scala版本的解决方案由nirg(假设边界矩形预检查是单独完成的):
def inside(p: Point, polygon: Array[Point], bounds: Bounds): Boolean = {
val length = polygon.length
@tailrec
def oddIntersections(i: Int, j: Int, tracker: Boolean): Boolean = {
if (i == length)
tracker
else {
val intersects = (polygon(i).y > p.y) != (polygon(j).y > p.y) && p.x < (polygon(j).x - polygon(i).x) * (p.y - polygon(i).y) / (polygon(j).y - polygon(i).y) + polygon(i).x
oddIntersections(i + 1, i, if (intersects) !tracker else tracker)
}
}
oddIntersections(0, length - 1, tracker = false)
}
推荐文章
- 如何加速gwt编译器?
- MySQL OR与IN性能
- 应该……接住环内还是环外?
- 哪个更快/最好?SELECT *或SELECT columnn1, colum2, column3等
- 加快R中的循环操作
- INT和VARCHAR主键之间有真正的性能差异吗?
- c++标准是否要求iostreams的性能很差,或者我只是在处理一个糟糕的实现?
- 大概的成本访问各种缓存和主存储器?
- 模拟慢速互联网连接
- 如何检查表上持有哪些锁
- 检查字符串是否包含字符串列表中的元素
- Scala vs Python的Spark性能
- 现代c++能让你免费获得性能吗?
- 对于PostgreSQL表来说,多大才算太大?
- 即使从未抛出异常,使用try-catch块的代价是否昂贵?