我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。


当前回答

您可以通过检查将所需点连接到多边形顶点所形成的面积是否与多边形本身的面积相匹配来实现这一点。

或者你可以检查从你的点到每一对连续的多边形顶点到你的检查点的内角之和是否为360,但我有一种感觉,第一种选择更快,因为它不涉及除法,也不计算三角函数的反函数。

我不知道如果你的多边形内部有一个洞会发生什么,但在我看来,主要思想可以适应这种情况

你也可以把问题贴在数学社区里。我打赌他们有一百万种方法

其他回答

这个问题的大多数答案并没有很好地处理所有的极端情况。以下是一些微妙的极端情况: 这是一个javascript版本,所有角落的情况都得到了很好的处理。

/** Get relationship between a point and a polygon using ray-casting algorithm
 * @param {{x:number, y:number}} P: point to check
 * @param {{x:number, y:number}[]} polygon: the polygon
 * @returns -1: outside, 0: on edge, 1: inside
 */
function relationPP(P, polygon) {
    const between = (p, a, b) => p >= a && p <= b || p <= a && p >= b
    let inside = false
    for (let i = polygon.length-1, j = 0; j < polygon.length; i = j, j++) {
        const A = polygon[i]
        const B = polygon[j]
        // corner cases
        if (P.x == A.x && P.y == A.y || P.x == B.x && P.y == B.y) return 0
        if (A.y == B.y && P.y == A.y && between(P.x, A.x, B.x)) return 0

        if (between(P.y, A.y, B.y)) { // if P inside the vertical range
            // filter out "ray pass vertex" problem by treating the line a little lower
            if (P.y == A.y && B.y >= A.y || P.y == B.y && A.y >= B.y) continue
            // calc cross product `PA X PB`, P lays on left side of AB if c > 0 
            const c = (A.x - P.x) * (B.y - P.y) - (B.x - P.x) * (A.y - P.y)
            if (c == 0) return 0
            if ((A.y < B.y) == (c > 0)) inside = !inside
        }
    }

    return inside? 1 : -1
}

我知道这是旧的,但这里是一个在Cocoa实现的光线投射算法,如果有人感兴趣的话。不确定这是最有效的方法,但它可能会帮助别人。

- (BOOL)shape:(NSBezierPath *)path containsPoint:(NSPoint)point
{
    NSBezierPath *currentPath = [path bezierPathByFlatteningPath];
    BOOL result;
    float aggregateX = 0; //I use these to calculate the centroid of the shape
    float aggregateY = 0;
    NSPoint firstPoint[1];
    [currentPath elementAtIndex:0 associatedPoints:firstPoint];
    float olderX = firstPoint[0].x;
    float olderY = firstPoint[0].y;
    NSPoint interPoint;
    int noOfIntersections = 0;

    for (int n = 0; n < [currentPath elementCount]; n++) {
        NSPoint points[1];
        [currentPath elementAtIndex:n associatedPoints:points];
        aggregateX += points[0].x;
        aggregateY += points[0].y;
    }

    for (int n = 0; n < [currentPath elementCount]; n++) {
        NSPoint points[1];

        [currentPath elementAtIndex:n associatedPoints:points];
        //line equations in Ax + By = C form
        float _A_FOO = (aggregateY/[currentPath elementCount]) - point.y;  
        float _B_FOO = point.x - (aggregateX/[currentPath elementCount]);
        float _C_FOO = (_A_FOO * point.x) + (_B_FOO * point.y);

        float _A_BAR = olderY - points[0].y;
        float _B_BAR = points[0].x - olderX;
        float _C_BAR = (_A_BAR * olderX) + (_B_BAR * olderY);

        float det = (_A_FOO * _B_BAR) - (_A_BAR * _B_FOO);
        if (det != 0) {
            //intersection points with the edges
            float xIntersectionPoint = ((_B_BAR * _C_FOO) - (_B_FOO * _C_BAR)) / det;
            float yIntersectionPoint = ((_A_FOO * _C_BAR) - (_A_BAR * _C_FOO)) / det;
            interPoint = NSMakePoint(xIntersectionPoint, yIntersectionPoint);
            if (olderX <= points[0].x) {
                //doesn't matter in which direction the ray goes, so I send it right-ward.
                if ((interPoint.x >= olderX && interPoint.x <= points[0].x) && (interPoint.x > point.x)) {  
                    noOfIntersections++;
                }
            } else {
                if ((interPoint.x >= points[0].x && interPoint.x <= olderX) && (interPoint.x > point.x)) {
                     noOfIntersections++;
                } 
            }
        }
        olderX = points[0].x;
        olderY = points[0].y;
    }
    if (noOfIntersections % 2 == 0) {
        result = FALSE;
    } else {
        result = TRUE;
    }
    return result;
}

简单的解决方案是将多边形划分为三角形,并按这里解释的那样对三角形进行测试

如果你的多边形是凸多边形,可能有更好的方法。把这个多边形看作是无限条线的集合。每一行将空间一分为二。对于每一个点,很容易判断它是在直线的一边还是另一边。如果一个点在所有直线的同一侧,那么它在多边形内。

当我还是Michael Stonebraker手下的一名研究员时,我做了一些关于这方面的工作——你知道,就是那位提出了Ingres、PostgreSQL等的教授。

我们意识到最快的方法是首先做一个边界框,因为它非常快。如果它在边界框之外,它就在外面。否则,你就得做更辛苦的工作……

如果你想要一个伟大的算法,看看开源项目PostgreSQL的源代码的地理工作…

我想指出的是,我们从来没有深入了解过左撇子和右撇子(也可以表达为“内”和“外”的问题……


更新

BKB's link provided a good number of reasonable algorithms. I was working on Earth Science problems and therefore needed a solution that works in latitude/longitude, and it has the peculiar problem of handedness - is the area inside the smaller area or the bigger area? The answer is that the "direction" of the verticies matters - it's either left-handed or right handed and in this way you can indicate either area as "inside" any given polygon. As such, my work used solution three enumerated on that page.

此外,我的工作使用单独的函数进行“在线”测试。

...因为有人问:我们发现当垂直的数量超过某个数字时,边界盒测试是最好的——如果有必要,在做更长的测试之前做一个非常快速的测试……边界框是通过简单地将最大的x,最小的x,最大的y和最小的y放在一起,组成一个框的四个点来创建的……

另一个提示是:我们在网格空间中进行了所有更复杂的“调光”计算,都是在平面上的正点上进行的,然后重新投影到“真实”的经度/纬度上,从而避免了在经度180线交叉时和处理极地时可能出现的环绕错误。工作好了!

下面是golang版本的@nirg答案(灵感来自于@@m-katz的c#代码)

func isPointInPolygon(polygon []point, testp point) bool {
    minX := polygon[0].X
    maxX := polygon[0].X
    minY := polygon[0].Y
    maxY := polygon[0].Y

    for _, p := range polygon {
        minX = min(p.X, minX)
        maxX = max(p.X, maxX)
        minY = min(p.Y, minY)
        maxY = max(p.Y, maxY)
    }

    if testp.X < minX || testp.X > maxX || testp.Y < minY || testp.Y > maxY {
        return false
    }

    inside := false
    j := len(polygon) - 1
    for i := 0; i < len(polygon); i++ {
        if (polygon[i].Y > testp.Y) != (polygon[j].Y > testp.Y) && testp.X < (polygon[j].X-polygon[i].X)*(testp.Y-polygon[i].Y)/(polygon[j].Y-polygon[i].Y)+polygon[i].X {
            inside = !inside
        }
        j = i
    }

    return inside
}