我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。


当前回答

您可以通过检查将所需点连接到多边形顶点所形成的面积是否与多边形本身的面积相匹配来实现这一点。

或者你可以检查从你的点到每一对连续的多边形顶点到你的检查点的内角之和是否为360,但我有一种感觉,第一种选择更快,因为它不涉及除法,也不计算三角函数的反函数。

我不知道如果你的多边形内部有一个洞会发生什么,但在我看来,主要思想可以适应这种情况

你也可以把问题贴在数学社区里。我打赌他们有一百万种方法

其他回答

Java版本:

public class Geocode {
    private float latitude;
    private float longitude;

    public Geocode() {
    }

    public Geocode(float latitude, float longitude) {
        this.latitude = latitude;
        this.longitude = longitude;
    }

    public float getLatitude() {
        return latitude;
    }

    public void setLatitude(float latitude) {
        this.latitude = latitude;
    }

    public float getLongitude() {
        return longitude;
    }

    public void setLongitude(float longitude) {
        this.longitude = longitude;
    }
}

public class GeoPolygon {
    private ArrayList<Geocode> points;

    public GeoPolygon() {
        this.points = new ArrayList<Geocode>();
    }

    public GeoPolygon(ArrayList<Geocode> points) {
        this.points = points;
    }

    public GeoPolygon add(Geocode geo) {
        points.add(geo);
        return this;
    }

    public boolean inside(Geocode geo) {
        int i, j;
        boolean c = false;
        for (i = 0, j = points.size() - 1; i < points.size(); j = i++) {
            if (((points.get(i).getLongitude() > geo.getLongitude()) != (points.get(j).getLongitude() > geo.getLongitude())) &&
                    (geo.getLatitude() < (points.get(j).getLatitude() - points.get(i).getLatitude()) * (geo.getLongitude() - points.get(i).getLongitude()) / (points.get(j).getLongitude() - points.get(i).getLongitude()) + points.get(i).getLatitude()))
                c = !c;
        }
        return c;
    }

}

真的很喜欢Nirg发布的解决方案,由bobobobo编辑。我只是让它javascript友好,更容易读懂我的使用:

function insidePoly(poly, pointx, pointy) {
    var i, j;
    var inside = false;
    for (i = 0, j = poly.length - 1; i < poly.length; j = i++) {
        if(((poly[i].y > pointy) != (poly[j].y > pointy)) && (pointx < (poly[j].x-poly[i].x) * (pointy-poly[i].y) / (poly[j].y-poly[i].y) + poly[i].x) ) inside = !inside;
    }
    return inside;
}

这个问题很有趣。我有另一个可行的想法,不同于这篇文章的其他答案。其原理是利用角度之和来判断目标是在内部还是外部。也就是圈数。

设x为目标点。让数组[0,1,....N]是该区域的所有点。用一条线将目标点与每一个边界点连接起来。如果目标点在这个区域内。所有角的和是360度。如果不是,角度将小于360度。

参考这张图来对这个概念有一个基本的了解:

我的算法假设顺时针是正方向。这是一个潜在的输入:

[[-122.402015, 48.225216], [-117.032049, 48.999931], [-116.919132, 45.995175], [-124.079107, 46.267259], [-124.717175, 48.377557], [-122.92315, 47.047963], [-122.402015, 48.225216]]

下面是实现这个想法的python代码:

def isInside(self, border, target):
degree = 0
for i in range(len(border) - 1):
    a = border[i]
    b = border[i + 1]

    # calculate distance of vector
    A = getDistance(a[0], a[1], b[0], b[1]);
    B = getDistance(target[0], target[1], a[0], a[1])
    C = getDistance(target[0], target[1], b[0], b[1])

    # calculate direction of vector
    ta_x = a[0] - target[0]
    ta_y = a[1] - target[1]
    tb_x = b[0] - target[0]
    tb_y = b[1] - target[1]

    cross = tb_y * ta_x - tb_x * ta_y
    clockwise = cross < 0

    # calculate sum of angles
    if(clockwise):
        degree = degree + math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
    else:
        degree = degree - math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))

if(abs(round(degree) - 360) <= 3):
    return True
return False

下面是Rust版本的@nirg答案(Philipp Lenssen javascript版本) 我给出这个答案是因为我从这个网站得到了很多帮助,我翻译javascript版本rust作为一个练习,希望可以帮助一些人,最后一个原因是,在我的工作中,我会把这段代码翻译成一个wasm,以提高我的画布的性能,这是一个开始。我的英语很差……,请原谅我 `

pub struct Point {
    x: f32,
    y: f32,
}
pub fn point_is_in_poly(pt: Point, polygon: &Vec<Point>) -> bool {
    let mut is_inside = false;

    let max_x = polygon.iter().map(|pt| pt.x).reduce(f32::max).unwrap();
    let min_x = polygon.iter().map(|pt| pt.x).reduce(f32::min).unwrap();
    let max_y = polygon.iter().map(|pt| pt.y).reduce(f32::max).unwrap();
    let min_y = polygon.iter().map(|pt| pt.y).reduce(f32::min).unwrap();

    if pt.x < min_x || pt.x > max_x || pt.y < min_y || pt.y > max_y {
        return is_inside;
    }

    let len = polygon.len();
    let mut j = len - 1;

    for i in 0..len {
        let y_i_value = polygon[i].y > pt.y;
        let y_j_value = polygon[j].y > pt.y;
        let last_check = (polygon[j].x - polygon[i].x) * (pt.y - polygon[i].y)
            / (polygon[j].y - polygon[i].y)
            + polygon[i].x;
        if y_i_value != y_j_value && pt.x < last_check {
            is_inside = !is_inside;
        }
        j = i;
    }
    is_inside
}


let pt = Point {
    x: 1266.753,
    y: 97.655,
};
let polygon = vec![
    Point {
        x: 725.278,
        y: 203.586,
    },
    Point {
        x: 486.831,
        y: 441.931,
    },
    Point {
        x: 905.77,
        y: 445.241,
    },
    Point {
        x: 1026.649,
        y: 201.931,
    },
];
let pt1 = Point {
    x: 725.278,
    y: 203.586,
};
let pt2 = Point {
    x: 872.652,
    y: 321.103,
};
println!("{}", point_is_in_poly(pt, &polygon));// false
println!("{}", point_is_in_poly(pt1, &polygon)); // true
println!("{}", point_is_in_poly(pt2, &polygon));// true

`

计算点p与每个多边形顶点之间的有向角和。如果总倾斜角是360度,那么这个点在里面。如果总数为0,则点在外面。

我更喜欢这种方法,因为它更健壮,对数值精度的依赖更小。

计算交集数量的均匀性的方法是有限的,因为你可以在计算交集数量的过程中“击中”一个顶点。

编辑:顺便说一下,这种方法适用于凹凸多边形。

编辑:我最近在维基百科上找到了一篇关于这个话题的完整文章。