我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
这只适用于凸形状,但是Minkowski Portal Refinement和GJK也是测试一个点是否在多边形中的很好的选择。您使用闵可夫斯基减法从多边形中减去点,然后运行这些算法来查看多边形是否包含原点。
另外,有趣的是,你可以用支持函数更隐式地描述你的形状,它以一个方向向量作为输入,并输出沿该向量的最远点。这可以让你描述任何凸形状..弯曲的,由多边形制成的,或混合的您还可以执行一些操作,将简单支持函数的结果组合起来,以生成更复杂的形状。
更多信息: http://xenocollide.snethen.com/mpr2d.html
此外,game programming gems 7讨论了如何在3d中做到这一点(:
其他回答
这似乎在R中工作(为丑陋道歉,希望看到更好的版本!)。
pnpoly <- function(nvert,vertx,verty,testx,testy){
c <- FALSE
j <- nvert
for (i in 1:nvert){
if( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i])*(testy-verty[i])/(verty[j]-verty[i])+vertx[i]))
{c <- !c}
j <- i}
return(c)}
下面是Rust版本的@nirg答案(Philipp Lenssen javascript版本) 我给出这个答案是因为我从这个网站得到了很多帮助,我翻译javascript版本rust作为一个练习,希望可以帮助一些人,最后一个原因是,在我的工作中,我会把这段代码翻译成一个wasm,以提高我的画布的性能,这是一个开始。我的英语很差……,请原谅我 `
pub struct Point {
x: f32,
y: f32,
}
pub fn point_is_in_poly(pt: Point, polygon: &Vec<Point>) -> bool {
let mut is_inside = false;
let max_x = polygon.iter().map(|pt| pt.x).reduce(f32::max).unwrap();
let min_x = polygon.iter().map(|pt| pt.x).reduce(f32::min).unwrap();
let max_y = polygon.iter().map(|pt| pt.y).reduce(f32::max).unwrap();
let min_y = polygon.iter().map(|pt| pt.y).reduce(f32::min).unwrap();
if pt.x < min_x || pt.x > max_x || pt.y < min_y || pt.y > max_y {
return is_inside;
}
let len = polygon.len();
let mut j = len - 1;
for i in 0..len {
let y_i_value = polygon[i].y > pt.y;
let y_j_value = polygon[j].y > pt.y;
let last_check = (polygon[j].x - polygon[i].x) * (pt.y - polygon[i].y)
/ (polygon[j].y - polygon[i].y)
+ polygon[i].x;
if y_i_value != y_j_value && pt.x < last_check {
is_inside = !is_inside;
}
j = i;
}
is_inside
}
let pt = Point {
x: 1266.753,
y: 97.655,
};
let polygon = vec![
Point {
x: 725.278,
y: 203.586,
},
Point {
x: 486.831,
y: 441.931,
},
Point {
x: 905.77,
y: 445.241,
},
Point {
x: 1026.649,
y: 201.931,
},
];
let pt1 = Point {
x: 725.278,
y: 203.586,
};
let pt2 = Point {
x: 872.652,
y: 321.103,
};
println!("{}", point_is_in_poly(pt, &polygon));// false
println!("{}", point_is_in_poly(pt1, &polygon)); // true
println!("{}", point_is_in_poly(pt2, &polygon));// true
`
nirg回答的Swift版本:
extension CGPoint {
func isInsidePolygon(vertices: [CGPoint]) -> Bool {
guard !vertices.isEmpty else { return false }
var j = vertices.last!, c = false
for i in vertices {
let a = (i.y > y) != (j.y > y)
let b = (x < (j.x - i.x) * (y - i.y) / (j.y - i.y) + i.x)
if a && b { c = !c }
j = i
}
return c
}
}
我认为下面这段代码是最好的解决方案(从这里开始):
int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++) {
if ( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
c = !c;
}
return c;
}
参数
nvert:多边形中的顶点数。是否在末端重复第一个顶点在上面的文章中已经讨论过了。 vertx, verty:包含多边形顶点的x坐标和y坐标的数组。 testx, testy:测试点的X坐标和y坐标。
它既简短又高效,适用于凸多边形和凹多边形。如前所述,您应该首先检查边界矩形,并单独处理多边形孔。
这背后的想法很简单。作者描述如下:
我从测试点水平运行一条半无限射线(增加x,固定y),并计算它穿过多少条边。在每个十字路口,光线在内部和外部之间切换。这叫做乔丹曲线定理。
当水平射线穿过任意一条边时,变量c从0变为1,从1变为0。基本上它记录了交叉边的数量是偶数还是奇数。0表示偶数,1表示奇数。
David Segond's answer is pretty much the standard general answer, and Richard T's is the most common optimization, though therre are some others. Other strong optimizations are based on less general solutions. For example if you are going to check the same polygon with lots of points, triangulating the polygon can speed things up hugely as there are a number of very fast TIN searching algorithms. Another is if the polygon and points are on a limited plane at low resolution, say a screen display, you can paint the polygon onto a memory mapped display buffer in a given colour, and check the color of a given pixel to see if it lies in the polygons.
像许多优化一样,这些优化是基于特定情况而不是一般情况,并且基于摊销时间而不是单次使用产生效益。
在这个领域工作,我发现约瑟夫·奥鲁克斯的《计算几何》在C' ISBN 0-521-44034-3是一个很大的帮助。