我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。
当前回答
这只适用于凸形状,但是Minkowski Portal Refinement和GJK也是测试一个点是否在多边形中的很好的选择。您使用闵可夫斯基减法从多边形中减去点,然后运行这些算法来查看多边形是否包含原点。
另外,有趣的是,你可以用支持函数更隐式地描述你的形状,它以一个方向向量作为输入,并输出沿该向量的最远点。这可以让你描述任何凸形状..弯曲的,由多边形制成的,或混合的您还可以执行一些操作,将简单支持函数的结果组合起来,以生成更复杂的形状。
更多信息: http://xenocollide.snethen.com/mpr2d.html
此外,game programming gems 7讨论了如何在3d中做到这一点(:
其他回答
我认为下面这段代码是最好的解决方案(从这里开始):
int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
int i, j, c = 0;
for (i = 0, j = nvert-1; i < nvert; j = i++) {
if ( ((verty[i]>testy) != (verty[j]>testy)) &&
(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
c = !c;
}
return c;
}
参数
nvert:多边形中的顶点数。是否在末端重复第一个顶点在上面的文章中已经讨论过了。 vertx, verty:包含多边形顶点的x坐标和y坐标的数组。 testx, testy:测试点的X坐标和y坐标。
它既简短又高效,适用于凸多边形和凹多边形。如前所述,您应该首先检查边界矩形,并单独处理多边形孔。
这背后的想法很简单。作者描述如下:
我从测试点水平运行一条半无限射线(增加x,固定y),并计算它穿过多少条边。在每个十字路口,光线在内部和外部之间切换。这叫做乔丹曲线定理。
当水平射线穿过任意一条边时,变量c从0变为1,从1变为0。基本上它记录了交叉边的数量是偶数还是奇数。0表示偶数,1表示奇数。
令人惊讶的是之前没有人提出这个问题,但是对于需要数据库的实用主义者来说:MongoDB对Geo查询提供了出色的支持,包括这个查询。
你需要的是:
db.neighborhoods。findOne({geometry: {$geoIntersects: {$geometry: { type: "Point",坐标:["经度","纬度"]}}} })
communities是存储一个或多个标准GeoJson格式多边形的集合。如果查询返回null,则表示不相交,否则为。
这里有详细的记录: https://docs.mongodb.com/manual/tutorial/geospatial-tutorial/
在330个不规则多边形网格中,超过6000个点分类的性能不到一分钟,没有任何优化,包括用各自的多边形更新文档的时间。
在C语言的多边形测试中,有一个点没有使用光线投射。它可以用于重叠区域(自我交叉),请参阅use_holes参数。
/* math lib (defined below) */
static float dot_v2v2(const float a[2], const float b[2]);
static float angle_signed_v2v2(const float v1[2], const float v2[2]);
static void copy_v2_v2(float r[2], const float a[2]);
/* intersection function */
bool isect_point_poly_v2(const float pt[2], const float verts[][2], const unsigned int nr,
const bool use_holes)
{
/* we do the angle rule, define that all added angles should be about zero or (2 * PI) */
float angletot = 0.0;
float fp1[2], fp2[2];
unsigned int i;
const float *p1, *p2;
p1 = verts[nr - 1];
/* first vector */
fp1[0] = p1[0] - pt[0];
fp1[1] = p1[1] - pt[1];
for (i = 0; i < nr; i++) {
p2 = verts[i];
/* second vector */
fp2[0] = p2[0] - pt[0];
fp2[1] = p2[1] - pt[1];
/* dot and angle and cross */
angletot += angle_signed_v2v2(fp1, fp2);
/* circulate */
copy_v2_v2(fp1, fp2);
p1 = p2;
}
angletot = fabsf(angletot);
if (use_holes) {
const float nested = floorf((angletot / (float)(M_PI * 2.0)) + 0.00001f);
angletot -= nested * (float)(M_PI * 2.0);
return (angletot > 4.0f) != ((int)nested % 2);
}
else {
return (angletot > 4.0f);
}
}
/* math lib */
static float dot_v2v2(const float a[2], const float b[2])
{
return a[0] * b[0] + a[1] * b[1];
}
static float angle_signed_v2v2(const float v1[2], const float v2[2])
{
const float perp_dot = (v1[1] * v2[0]) - (v1[0] * v2[1]);
return atan2f(perp_dot, dot_v2v2(v1, v2));
}
static void copy_v2_v2(float r[2], const float a[2])
{
r[0] = a[0];
r[1] = a[1];
}
注意:这是一个不太理想的方法,因为它包含很多对atan2f的调用,但它可能会引起阅读这个线程的开发人员的兴趣(在我的测试中,它比使用线交方法慢23倍)。
这个问题很有趣。我有另一个可行的想法,不同于这篇文章的其他答案。其原理是利用角度之和来判断目标是在内部还是外部。也就是圈数。
设x为目标点。让数组[0,1,....N]是该区域的所有点。用一条线将目标点与每一个边界点连接起来。如果目标点在这个区域内。所有角的和是360度。如果不是,角度将小于360度。
参考这张图来对这个概念有一个基本的了解:
我的算法假设顺时针是正方向。这是一个潜在的输入:
[[-122.402015, 48.225216], [-117.032049, 48.999931], [-116.919132, 45.995175], [-124.079107, 46.267259], [-124.717175, 48.377557], [-122.92315, 47.047963], [-122.402015, 48.225216]]
下面是实现这个想法的python代码:
def isInside(self, border, target):
degree = 0
for i in range(len(border) - 1):
a = border[i]
b = border[i + 1]
# calculate distance of vector
A = getDistance(a[0], a[1], b[0], b[1]);
B = getDistance(target[0], target[1], a[0], a[1])
C = getDistance(target[0], target[1], b[0], b[1])
# calculate direction of vector
ta_x = a[0] - target[0]
ta_y = a[1] - target[1]
tb_x = b[0] - target[0]
tb_y = b[1] - target[1]
cross = tb_y * ta_x - tb_x * ta_y
clockwise = cross < 0
# calculate sum of angles
if(clockwise):
degree = degree + math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
else:
degree = degree - math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
if(abs(round(degree) - 360) <= 3):
return True
return False
nirg回答的Swift版本:
extension CGPoint {
func isInsidePolygon(vertices: [CGPoint]) -> Bool {
guard !vertices.isEmpty else { return false }
var j = vertices.last!, c = false
for i in vertices {
let a = (i.y > y) != (j.y > y)
let b = (x < (j.x - i.x) * (y - i.y) / (j.y - i.y) + i.x)
if a && b { c = !c }
j = i
}
return c
}
}
推荐文章
- 如何加速gwt编译器?
- MySQL OR与IN性能
- 应该……接住环内还是环外?
- 哪个更快/最好?SELECT *或SELECT columnn1, colum2, column3等
- 加快R中的循环操作
- INT和VARCHAR主键之间有真正的性能差异吗?
- c++标准是否要求iostreams的性能很差,或者我只是在处理一个糟糕的实现?
- 大概的成本访问各种缓存和主存储器?
- 模拟慢速互联网连接
- 如何检查表上持有哪些锁
- 检查字符串是否包含字符串列表中的元素
- Scala vs Python的Spark性能
- 现代c++能让你免费获得性能吗?
- 对于PostgreSQL表来说,多大才算太大?
- 即使从未抛出异常,使用try-catch块的代价是否昂贵?