我正在寻找一个关于哈希表如何工作的解释-用简单的英语为我这样的傻瓜!

例如,我知道它接受键,计算哈希(我正在寻找一个解释),然后执行某种模运算来计算出它在存储值的数组中的位置,但我的知识到此为止。

谁能解释一下过程吗?

编辑:我并不是特别问哈希码是如何计算的,而是对哈希表如何工作的一般概述。


当前回答

有很多答案,但没有一个是非常可视化的,而哈希表在可视化时很容易“点击”。

哈希表通常实现为链表数组。如果我们想象一个存储人名的表,经过几次插入之后,它可能会被放置在内存中,其中()包含的数字是文本/姓名的哈希值。

bucket#  bucket content / linked list

[0]      --> "sue"(780) --> null
[1]      null
[2]      --> "fred"(42) --> "bill"(9282) --> "jane"(42) --> null
[3]      --> "mary"(73) --> null
[4]      null
[5]      --> "masayuki"(75) --> "sarwar"(105) --> null
[6]      --> "margaret"(2626) --> null
[7]      null
[8]      --> "bob"(308) --> null
[9]      null

以下几点:

each of the array entries (indices [0], [1]...) is known as a bucket, and starts a - possibly empty - linked list of values (aka elements, in this example - people's names) each value (e.g. "fred" with hash 42) is linked from bucket [hash % number_of_buckets] e.g. 42 % 10 == [2]; % is the modulo operator - the remainder when divided by the number of buckets multiple data values may collide at and be linked from the same bucket, most often because their hash values collide after the modulo operation (e.g. 42 % 10 == [2], and 9282 % 10 == [2]), but occasionally because the hash values are the same (e.g. "fred" and "jane" both shown with hash 42 above) most hash tables handle collisions - with slightly reduced performance but no functional confusion - by comparing the full value (here text) of a value being sought or inserted to each value already in the linked list at the hashed-to bucket

链表长度与负载因子有关,而不是值的数量

如果表的大小增加,上面实现的哈希表倾向于调整自己的大小(即创建一个更大的桶数组,在那里创建新的/更新的链表,删除旧的数组),以保持值与桶的比率(又名负载因子)在0.5到1.0的范围内。

Hans gives the actual formula for other load factors in a comment below, but for indicative values: with load factor 1 and a cryptographic strength hash function, 1/e (~36.8%) of buckets will tend to be empty, another 1/e (~36.8%) have one element, 1/(2e) or ~18.4% two elements, 1/(3!e) about 6.1% three elements, 1/(4!e) or ~1.5% four elements, 1/(5!e) ~.3% have five etc.. - the average chain length from non-empty buckets is ~1.58 no matter how many elements are in the table (i.e. whether there are 100 elements and 100 buckets, or 100 million elements and 100 million buckets), which is why we say lookup/insert/erase are O(1) constant time operations.

哈希表如何将键与值关联

Given a hash table implementation as described above, we can imagine creating a value type such as `struct Value { string name; int age; };`, and equality comparison and hash functions that only look at the `name` field (ignoring age), and then something wonderful happens: we can store `Value` records like `{"sue", 63}` in the table, then later search for "sue" without knowing her age, find the stored value and recover or even update her age - happy birthday Sue - which interestingly doesn't change the hash value so doesn't require that we move Sue's record to another bucket.

当我们这样做的时候,我们使用哈希表作为一个关联容器,也就是map,它存储的值可以被认为是由一个键(名称)和一个或多个其他字段组成,仍然被称为值(在我的例子中,只是年龄)。用作映射的哈希表实现称为哈希映射。

这与前面我们存储离散值的例子形成了对比,比如“sue”,你可以把它看作是它自己的键:这种用法被称为散列集。

还有其他方法来实现哈希表

并不是所有的哈希表都使用链表(称为独立链表),但大多数通用哈希表都使用链表,因为主要的替代封闭哈希(又名开放寻址)-特别是支持擦除操作-与易于冲突的键/哈希函数相比性能不太稳定。


简单讲一下哈希函数

强大的散列…

一个通用的、最小化最坏情况碰撞的哈希函数的工作是有效地随机地在哈希表桶周围散布键,同时总是为相同的键生成相同的哈希值。理想情况下,即使在键的任何位置改变一个位,也会随机地翻转结果哈希值中的大约一半位。

This is normally orchestrated with maths too complicated for me to grok. I'll mention one easy-to-understand way - not the most scalable or cache friendly but inherently elegant (like encryption with a one-time pad!) - as I think it helps drive home the desirable qualities mentioned above. Say you were hashing 64-bit doubles - you could create 8 tables each of 256 random numbers (code below), then use each 8-bit/1-byte slice of the double's memory representation to index into a different table, XORing the random numbers you look up. With this approach, it's easy to see that a bit (in the binary digit sense) changing anywhere in the double results in a different random number being looked up in one of the tables, and a totally uncorrelated final value.

// note caveats above: cache unfriendly (SLOW) but strong hashing...
std::size_t random[8][256] = { ...random data... };
auto p = (const std::byte*)&my_double;
size_t hash = random[0][p[0]] ^
              random[1][p[1]] ^
              ... ^
              random[7][p[7]];

弱但通常快速的哈希…

Many libraries' hashing functions pass integers through unchanged (known as a trivial or identity hash function); it's the other extreme from the strong hashing described above. An identity hash is extremely collision prone in the worst cases, but the hope is that in the fairly common case of integer keys that tend to be incrementing (perhaps with some gaps), they'll map into successive buckets leaving fewer empty than random hashing leaves (our ~36.8% at load factor 1 mentioned earlier), thereby having fewer collisions and fewer longer linked lists of colliding elements than is achieved by random mappings. It's also great to save the time it takes to generate a strong hash, and if keys are looked up in order they'll be found in buckets nearby in memory, improving cache hits. When the keys don't increment nicely, the hope is they'll be random enough they won't need a strong hash function to totally randomise their placement into buckets.

其他回答

到目前为止,所有的答案都很好,并且从不同的方面了解了哈希表的工作方式。这里有一个简单的例子,可能会有帮助。假设我们想要存储一些带有小写字母字符串的项作为键。

正如simon所解释的,哈希函数用于从大空间映射到小空间。对于我们的例子,一个简单的哈希函数实现可以取字符串的第一个字母,并将其映射为一个整数,因此“短吻鳄”的哈希代码为0,“蜜蜂”的哈希代码为1,“斑马”的哈希代码为25,等等。

接下来,我们有一个包含26个存储桶的数组(在Java中可以是数组列表),我们将项放入与键的哈希码匹配的存储桶中。如果我们有不止一个元素键以相同字母开头,它们就会有相同的哈希码,所以它们都会进入存储桶中寻找那个哈希码所以必须在存储桶中进行线性搜索才能找到一个特定的元素。

在我们的例子中,如果我们只有几十个项目,键横跨字母表,它会工作得很好。然而,如果我们有一百万个条目,或者所有的键都以'a'或'b'开头,那么我们的哈希表就不是理想的。为了获得更好的性能,我们需要一个不同的哈希函数和/或更多的桶。

这是一个相当深奥的理论领域,但基本轮廓很简单。

本质上,哈希函数只是一个函数,它从一个空间(比如任意长度的字符串)获取内容,并将它们映射到一个用于索引的空间(比如无符号整数)。

如果你只有一个小空间的东西来散列,你可能只需要把这些东西解释为整数,你就完成了(例如4字节字符串)

不过,通常情况下,你的空间要大得多。如果你允许作为键的空间大于你用于索引的空间(你的uint32或其他),那么你不可能为每个键都有唯一的值。当两个或多个东西散列到相同的结果时,您必须以适当的方式处理冗余(这通常被称为冲突,如何处理它或不处理它将略微取决于您使用散列的目的)。

这意味着你不希望得到相同的结果,你也可能希望哈希函数是快速的。

平衡这两个属性(以及其他一些属性)让许多人忙得不可开交!

在实践中,您通常应该能够找到一个已知适合您的应用程序的函数并使用它。

Now to make this work as a hashtable: Imagine you didn't care about memory usage. Then you can create an array as long as your indexing set (all uint32's, for example). As you add something to the table, you hash it's key and look at the array at that index. If there is nothing there, you put your value there. If there is already something there, you add this new entry to a list of things at that address, along with enough information (your original key, or something clever) to find which entry actually belongs to which key.

因此,随着时间的推移,哈希表(数组)中的每个条目要么是空的,要么包含一个条目,要么包含一个条目列表。检索很简单,就像在数组中建立索引,然后返回值,或者遍历值列表并返回正确的值。

当然,在实践中你通常不能这样做,它浪费太多的内存。因此,所有操作都基于稀疏数组(其中唯一的条目是实际使用的条目,其他所有内容都隐式为空)。

有很多方案和技巧可以让它更好地工作,但这是最基本的。

对于所有寻找编程用语的人,下面是它是如何工作的。高级哈希表的内部实现有许多复杂之处,并且对存储分配/释放和搜索进行了优化,但顶层的思想是非常相同的。

(void) addValue : (object) value
{
   int bucket = calculate_bucket_from_val(value);
   if (bucket) 
   {
       //do nothing, just overwrite
   }
   else   //create bucket
   {
      create_extra_space_for_bucket();
   }
   put_value_into_bucket(bucket,value);
}

(bool) exists : (object) value
{
   int bucket = calculate_bucket_from_val(value);
   return bucket;
}

其中calculate_bucket_from_val()是哈希函数,所有的惟一性魔术都必须在这里发生。

经验法则是: 对于要插入的给定值,bucket必须是唯一的,并且派生自它应该存储的值。

Bucket是存储值的任何空间-这里我将它保持int作为数组索引,但它也可能是一个内存位置。

简短而甜蜜:

哈希表封装了一个数组,我们称之为internalArray。将项以如下方式插入数组:

let insert key value =
    internalArray[hash(key) % internalArray.Length] <- (key, value)
    //oversimplified for educational purposes

有时两个键会散列到数组中的同一个索引,而您希望保留这两个值。我喜欢把两个值都存储在同一个索引中,通过将internalArray作为一个链表数组来编码很简单:

let insert key value =
    internalArray[hash(key) % internalArray.Length].AddLast(key, value)

所以,如果我想从哈希表中检索一个项,我可以这样写:

let get key =
    let linkedList = internalArray[hash(key) % internalArray.Length]
    for (testKey, value) in linkedList
        if (testKey = key) then return value
    return null

删除操作写起来也很简单。正如你所知道的,从我们的链表数组中插入、查找和删除几乎是O(1)。

当我们的internalArray太满时,可能在85%左右的容量,我们可以调整内部数组的大小,并将所有项目从旧数组移动到新数组中。

有很多答案,但没有一个是非常可视化的,而哈希表在可视化时很容易“点击”。

哈希表通常实现为链表数组。如果我们想象一个存储人名的表,经过几次插入之后,它可能会被放置在内存中,其中()包含的数字是文本/姓名的哈希值。

bucket#  bucket content / linked list

[0]      --> "sue"(780) --> null
[1]      null
[2]      --> "fred"(42) --> "bill"(9282) --> "jane"(42) --> null
[3]      --> "mary"(73) --> null
[4]      null
[5]      --> "masayuki"(75) --> "sarwar"(105) --> null
[6]      --> "margaret"(2626) --> null
[7]      null
[8]      --> "bob"(308) --> null
[9]      null

以下几点:

each of the array entries (indices [0], [1]...) is known as a bucket, and starts a - possibly empty - linked list of values (aka elements, in this example - people's names) each value (e.g. "fred" with hash 42) is linked from bucket [hash % number_of_buckets] e.g. 42 % 10 == [2]; % is the modulo operator - the remainder when divided by the number of buckets multiple data values may collide at and be linked from the same bucket, most often because their hash values collide after the modulo operation (e.g. 42 % 10 == [2], and 9282 % 10 == [2]), but occasionally because the hash values are the same (e.g. "fred" and "jane" both shown with hash 42 above) most hash tables handle collisions - with slightly reduced performance but no functional confusion - by comparing the full value (here text) of a value being sought or inserted to each value already in the linked list at the hashed-to bucket

链表长度与负载因子有关,而不是值的数量

如果表的大小增加,上面实现的哈希表倾向于调整自己的大小(即创建一个更大的桶数组,在那里创建新的/更新的链表,删除旧的数组),以保持值与桶的比率(又名负载因子)在0.5到1.0的范围内。

Hans gives the actual formula for other load factors in a comment below, but for indicative values: with load factor 1 and a cryptographic strength hash function, 1/e (~36.8%) of buckets will tend to be empty, another 1/e (~36.8%) have one element, 1/(2e) or ~18.4% two elements, 1/(3!e) about 6.1% three elements, 1/(4!e) or ~1.5% four elements, 1/(5!e) ~.3% have five etc.. - the average chain length from non-empty buckets is ~1.58 no matter how many elements are in the table (i.e. whether there are 100 elements and 100 buckets, or 100 million elements and 100 million buckets), which is why we say lookup/insert/erase are O(1) constant time operations.

哈希表如何将键与值关联

Given a hash table implementation as described above, we can imagine creating a value type such as `struct Value { string name; int age; };`, and equality comparison and hash functions that only look at the `name` field (ignoring age), and then something wonderful happens: we can store `Value` records like `{"sue", 63}` in the table, then later search for "sue" without knowing her age, find the stored value and recover or even update her age - happy birthday Sue - which interestingly doesn't change the hash value so doesn't require that we move Sue's record to another bucket.

当我们这样做的时候,我们使用哈希表作为一个关联容器,也就是map,它存储的值可以被认为是由一个键(名称)和一个或多个其他字段组成,仍然被称为值(在我的例子中,只是年龄)。用作映射的哈希表实现称为哈希映射。

这与前面我们存储离散值的例子形成了对比,比如“sue”,你可以把它看作是它自己的键:这种用法被称为散列集。

还有其他方法来实现哈希表

并不是所有的哈希表都使用链表(称为独立链表),但大多数通用哈希表都使用链表,因为主要的替代封闭哈希(又名开放寻址)-特别是支持擦除操作-与易于冲突的键/哈希函数相比性能不太稳定。


简单讲一下哈希函数

强大的散列…

一个通用的、最小化最坏情况碰撞的哈希函数的工作是有效地随机地在哈希表桶周围散布键,同时总是为相同的键生成相同的哈希值。理想情况下,即使在键的任何位置改变一个位,也会随机地翻转结果哈希值中的大约一半位。

This is normally orchestrated with maths too complicated for me to grok. I'll mention one easy-to-understand way - not the most scalable or cache friendly but inherently elegant (like encryption with a one-time pad!) - as I think it helps drive home the desirable qualities mentioned above. Say you were hashing 64-bit doubles - you could create 8 tables each of 256 random numbers (code below), then use each 8-bit/1-byte slice of the double's memory representation to index into a different table, XORing the random numbers you look up. With this approach, it's easy to see that a bit (in the binary digit sense) changing anywhere in the double results in a different random number being looked up in one of the tables, and a totally uncorrelated final value.

// note caveats above: cache unfriendly (SLOW) but strong hashing...
std::size_t random[8][256] = { ...random data... };
auto p = (const std::byte*)&my_double;
size_t hash = random[0][p[0]] ^
              random[1][p[1]] ^
              ... ^
              random[7][p[7]];

弱但通常快速的哈希…

Many libraries' hashing functions pass integers through unchanged (known as a trivial or identity hash function); it's the other extreme from the strong hashing described above. An identity hash is extremely collision prone in the worst cases, but the hope is that in the fairly common case of integer keys that tend to be incrementing (perhaps with some gaps), they'll map into successive buckets leaving fewer empty than random hashing leaves (our ~36.8% at load factor 1 mentioned earlier), thereby having fewer collisions and fewer longer linked lists of colliding elements than is achieved by random mappings. It's also great to save the time it takes to generate a strong hash, and if keys are looked up in order they'll be found in buckets nearby in memory, improving cache hits. When the keys don't increment nicely, the hope is they'll be random enough they won't need a strong hash function to totally randomise their placement into buckets.