我正在寻找一个关于哈希表如何工作的解释-用简单的英语为我这样的傻瓜!

例如,我知道它接受键,计算哈希(我正在寻找一个解释),然后执行某种模运算来计算出它在存储值的数组中的位置,但我的知识到此为止。

谁能解释一下过程吗?

编辑:我并不是特别问哈希码是如何计算的,而是对哈希表如何工作的一般概述。


当前回答

这是一个相当深奥的理论领域,但基本轮廓很简单。

本质上,哈希函数只是一个函数,它从一个空间(比如任意长度的字符串)获取内容,并将它们映射到一个用于索引的空间(比如无符号整数)。

如果你只有一个小空间的东西来散列,你可能只需要把这些东西解释为整数,你就完成了(例如4字节字符串)

不过,通常情况下,你的空间要大得多。如果你允许作为键的空间大于你用于索引的空间(你的uint32或其他),那么你不可能为每个键都有唯一的值。当两个或多个东西散列到相同的结果时,您必须以适当的方式处理冗余(这通常被称为冲突,如何处理它或不处理它将略微取决于您使用散列的目的)。

这意味着你不希望得到相同的结果,你也可能希望哈希函数是快速的。

平衡这两个属性(以及其他一些属性)让许多人忙得不可开交!

在实践中,您通常应该能够找到一个已知适合您的应用程序的函数并使用它。

Now to make this work as a hashtable: Imagine you didn't care about memory usage. Then you can create an array as long as your indexing set (all uint32's, for example). As you add something to the table, you hash it's key and look at the array at that index. If there is nothing there, you put your value there. If there is already something there, you add this new entry to a list of things at that address, along with enough information (your original key, or something clever) to find which entry actually belongs to which key.

因此,随着时间的推移,哈希表(数组)中的每个条目要么是空的,要么包含一个条目,要么包含一个条目列表。检索很简单,就像在数组中建立索引,然后返回值,或者遍历值列表并返回正确的值。

当然,在实践中你通常不能这样做,它浪费太多的内存。因此,所有操作都基于稀疏数组(其中唯一的条目是实际使用的条目,其他所有内容都隐式为空)。

有很多方案和技巧可以让它更好地工作,但这是最基本的。

其他回答

对于所有寻找编程用语的人,下面是它是如何工作的。高级哈希表的内部实现有许多复杂之处,并且对存储分配/释放和搜索进行了优化,但顶层的思想是非常相同的。

(void) addValue : (object) value
{
   int bucket = calculate_bucket_from_val(value);
   if (bucket) 
   {
       //do nothing, just overwrite
   }
   else   //create bucket
   {
      create_extra_space_for_bucket();
   }
   put_value_into_bucket(bucket,value);
}

(bool) exists : (object) value
{
   int bucket = calculate_bucket_from_val(value);
   return bucket;
}

其中calculate_bucket_from_val()是哈希函数,所有的惟一性魔术都必须在这里发生。

经验法则是: 对于要插入的给定值,bucket必须是唯一的,并且派生自它应该存储的值。

Bucket是存储值的任何空间-这里我将它保持int作为数组索引,但它也可能是一个内存位置。

你取一堆东西,和一个数组。

对于每一个东西,你为它建立一个索引,称为哈希。关于哈希的重要事情是它“分散”了很多;你不希望两个相似的东西有相似的哈希值。

你把东西放到数组中哈希值表示的位置。在一个给定的哈希中可以有多个对象,所以你可以将这些对象存储在数组或其他合适的东西中,我们通常称之为bucket。

当你在哈希中查找东西时,你会经历相同的步骤,计算哈希值,然后查看那个位置的bucket中有什么,并检查它是否是你要寻找的东西。

当你的哈希工作得很好并且你的数组足够大时,在数组的任何特定下标处最多只会有很少的东西,所以你不需要看太多。

额外的好处是,当你的哈希表被访问时,它会把找到的东西(如果有的话)移动到桶的开头,这样下次它就会是第一个被检查的东西。

其实比这更简单。

哈希表不过是一个包含键/值对的向量数组(通常是稀疏数组)。此数组的最大大小通常小于哈希表中存储的数据类型的可能值集中的项数。

哈希算法用于根据将存储在数组中的项的值生成该数组的索引。

This is where storing vectors of key/value pairs in the array come in. Because the set of values that can be indexes in the array is typically smaller than the number of all possible values that the type can have, it is possible that your hash algorithm is going to generate the same value for two separate keys. A good hash algorithm will prevent this as much as possible (which is why it is relegated to the type usually because it has specific information which a general hash algorithm can't possibly know), but it's impossible to prevent.

因此,您可以使用多个键来生成相同的散列代码。当这种情况发生时,将遍历向量中的项,并在向量中的键和正在查找的键之间进行直接比较。如果找到,则返回与该键关联的值,否则不返回任何值。

你们已经很接近完整地解释了这个问题,但是遗漏了一些东西。哈希表只是一个数组。数组本身将在每个槽中包含一些内容。至少要将哈希值或值本身存储在这个插槽中。除此之外,您还可以存储在此插槽上碰撞的值的链接/链表,或者您可以使用开放寻址方法。您还可以存储一个或多个指针,这些指针指向您希望从该槽中检索的其他数据。

It's important to note that the hashvalue itself generally does not indicate the slot into which to place the value. For example, a hashvalue might be a negative integer value. Obviously a negative number cannot point to an array location. Additionally, hash values will tend to many times be larger numbers than the slots available. Thus another calculation needs to be performed by the hashtable itself to figure out which slot the value should go into. This is done with a modulus math operation like:

uint slotIndex = hashValue % hashTableSize;

这个值是该值将要进入的槽。在开放寻址中,如果槽位已经被另一个哈希值和/或其他数据填充,将再次运行模运算来查找下一个槽:

slotIndex = (remainder + 1) % hashTableSize;

我想可能还有其他更高级的方法来确定槽索引,但这是我见过的最常见的方法……会对其他表现更好的公司感兴趣。

With the modulus method, if you have a table of say size 1000, any hashvalue that is between 1 and 1000 will go into the corresponding slot. Any Negative values, and any values greater than 1000 will be potentially colliding slot values. The chances of that happening depend both on your hashing method, as well as how many total items you add to the hash table. Generally, it's best practice to make the size of the hashtable such that the total number of values added to it is only equal to about 70% of its size. If your hash function does a good job of even distribution, you will generally encounter very few to no bucket/slot collisions and it will perform very quickly for both lookup and write operations. If the total number of values to add is not known in advance, make a good guesstimate using whatever means, and then resize your hashtable once the number of elements added to it reaches 70% of capacity.

我希望这对你有所帮助。

PS - In C# the GetHashCode() method is pretty slow and results in actual value collisions under a lot of conditions I've tested. For some real fun, build your own hashfunction and try to get it to NEVER collide on the specific data you are hashing, run faster than GetHashCode, and have a fairly even distribution. I've done this using long instead of int size hashcode values and it's worked quite well on up to 32 million entires hashvalues in the hashtable with 0 collisions. Unfortunately I can't share the code as it belongs to my employer... but I can reveal it is possible for certain data domains. When you can achieve this, the hashtable is VERY fast. :)

Hashtable inside contains cans in which it stores the key sets. The Hashtable uses the hashcode to decide to which the key pair should plan. The capacity to get the container area from Key's hashcode is known as hash work. In principle, a hash work is a capacity which when given a key, creates an address in the table. A hash work consistently returns a number for an item. Two equivalent items will consistently have a similar number while two inconsistent objects may not generally have various numbers. When we put objects into a hashtable then it is conceivable that various objects may have equal/ same hashcode. This is known as a collision. To determine collision, hashtable utilizes a variety of lists. The sets mapped to a single array index are stored in a list and then the list reference is stored in the index.