我有一个熊猫数据框架,我想把它分为3个单独的集。我知道使用sklearn中的train_test_split。交叉验证,可以将数据分为两组(训练和测试)。然而,我无法找到将数据分成三组的任何解决方案。最好是有原始数据的下标。

我知道一个解决办法是使用train_test_split两次,并以某种方式调整索引。但是是否有一种更标准/内置的方法将数据分成3组而不是2组?


当前回答

使用train_test_split非常方便,不需要在划分到几个集后执行重新索引,也不需要编写一些额外的代码。上面的最佳答案没有提到使用train_test_split分隔两次而不改变分区大小将不会给出最初预期的分区:

x_train, x_remain = train_test_split(x, test_size=(val_size + test_size))

那么x_remain中的验证集和测试集的部分就会发生变化,可以算作

new_test_size = np.around(test_size / (val_size + test_size), 2)
# To preserve (new_test_size + new_val_size) = 1.0 
new_val_size = 1.0 - new_test_size

x_val, x_test = train_test_split(x_remain, test_size=new_test_size)

在这种情况下,将保存所有初始分区。

其他回答

我能想到的最简单的方法是将分割分数映射到数组下标,如下所示:

train_set = data[:int((len(data)+1)*train_fraction)]
test_set = data[int((len(data)+1)*train_fraction):int((len(data)+1)*(train_fraction+test_fraction))]
val_set = data[int((len(data)+1)*(train_fraction+test_fraction)):]

其中data = random.shuffle(data)

使用train_test_split非常方便,不需要在划分到几个集后执行重新索引,也不需要编写一些额外的代码。上面的最佳答案没有提到使用train_test_split分隔两次而不改变分区大小将不会给出最初预期的分区:

x_train, x_remain = train_test_split(x, test_size=(val_size + test_size))

那么x_remain中的验证集和测试集的部分就会发生变化,可以算作

new_test_size = np.around(test_size / (val_size + test_size), 2)
# To preserve (new_test_size + new_val_size) = 1.0 
new_val_size = 1.0 - new_test_size

x_val, x_test = train_test_split(x_remain, test_size=new_test_size)

在这种情况下,将保存所有初始分区。

Numpy解决方案。我们将首先洗牌整个数据集(df。Sample (frac=1, random_state=42)),然后将我们的数据集分成以下部分:

60% -列车集, 20% -验证集, 20% -测试装置


In [305]: train, validate, test = \
              np.split(df.sample(frac=1, random_state=42), 
                       [int(.6*len(df)), int(.8*len(df))])

In [306]: train
Out[306]:
          A         B         C         D         E
0  0.046919  0.792216  0.206294  0.440346  0.038960
2  0.301010  0.625697  0.604724  0.936968  0.870064
1  0.642237  0.690403  0.813658  0.525379  0.396053
9  0.488484  0.389640  0.599637  0.122919  0.106505
8  0.842717  0.793315  0.554084  0.100361  0.367465
7  0.185214  0.603661  0.217677  0.281780  0.938540

In [307]: validate
Out[307]:
          A         B         C         D         E
5  0.806176  0.008896  0.362878  0.058903  0.026328
6  0.145777  0.485765  0.589272  0.806329  0.703479

In [308]: test
Out[308]:
          A         B         C         D         E
4  0.521640  0.332210  0.370177  0.859169  0.401087
3  0.333348  0.964011  0.083498  0.670386  0.169619

[int(.6*len(df)), int(.8*len(df))] -是numpy.split()的indices_or_sections数组。

下面是一个np.split()使用的小演示-让我们把20个元素的数组分成以下部分:80%,10%,10%:

In [45]: a = np.arange(1, 21)

In [46]: a
Out[46]: array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

In [47]: np.split(a, [int(.8 * len(a)), int(.9 * len(a))])
Out[47]:
[array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16]),
 array([17, 18]),
 array([19, 20])]

注意:

函数被编写来处理随机集创建的播种。你不应该依赖集分割,它不会随机化集合。

import numpy as np
import pandas as pd

def train_validate_test_split(df, train_percent=.6, validate_percent=.2, seed=None):
    np.random.seed(seed)
    perm = np.random.permutation(df.index)
    m = len(df.index)
    train_end = int(train_percent * m)
    validate_end = int(validate_percent * m) + train_end
    train = df.iloc[perm[:train_end]]
    validate = df.iloc[perm[train_end:validate_end]]
    test = df.iloc[perm[validate_end:]]
    return train, validate, test

示范

np.random.seed([3,1415])
df = pd.DataFrame(np.random.rand(10, 5), columns=list('ABCDE'))
df

train, validate, test = train_validate_test_split(df)

train

validate

test

然而,将数据集分为train、test、cv(0.6、0.2、0.2)的一种方法是使用train_test_split方法两次。

from sklearn.model_selection import train_test_split

x, x_test, y, y_test = train_test_split(xtrain,labels,test_size=0.2,train_size=0.8)
x_train, x_cv, y_train, y_cv = train_test_split(x,y,test_size = 0.25,train_size =0.75)