我有一个熊猫数据框架,我想把它分为3个单独的集。我知道使用sklearn中的train_test_split。交叉验证,可以将数据分为两组(训练和测试)。然而,我无法找到将数据分成三组的任何解决方案。最好是有原始数据的下标。
我知道一个解决办法是使用train_test_split两次,并以某种方式调整索引。但是是否有一种更标准/内置的方法将数据分成3组而不是2组?
我有一个熊猫数据框架,我想把它分为3个单独的集。我知道使用sklearn中的train_test_split。交叉验证,可以将数据分为两组(训练和测试)。然而,我无法找到将数据分成三组的任何解决方案。最好是有原始数据的下标。
我知道一个解决办法是使用train_test_split两次,并以某种方式调整索引。但是是否有一种更标准/内置的方法将数据分成3组而不是2组?
当前回答
然而,将数据集分为train、test、cv(0.6、0.2、0.2)的一种方法是使用train_test_split方法两次。
from sklearn.model_selection import train_test_split
x, x_test, y, y_test = train_test_split(xtrain,labels,test_size=0.2,train_size=0.8)
x_train, x_cv, y_train, y_cv = train_test_split(x,y,test_size = 0.25,train_size =0.75)
其他回答
回答任意数量的子集:
def _separate_dataset(patches, label_patches, percentage, shuffle: bool = True):
"""
:param patches: data patches
:param label_patches: label patches
:param percentage: list of percentages for each value, example [0.9, 0.02, 0.08] to get 90% train, 2% val and 8% test.
:param shuffle: Shuffle dataset before split.
:return: tuple of two lists of size = len(percentage), one with data x and other with labels y.
"""
x_test = patches
y_test = label_patches
percentage = list(percentage) # need it to be mutable
assert sum(percentage) == 1., f"percentage must add to 1, but it adds to sum{percentage} = {sum(percentage)}"
x = []
y = []
for i, per in enumerate(percentage[:-1]):
x_train, x_test, y_train, y_test = train_test_split(x_test, y_test, test_size=1-per, shuffle=shuffle)
percentage[i+1:] = [value / (1-percentage[i]) for value in percentage[i+1:]]
x.append(x_train)
y.append(y_train)
x.append(x_test)
y.append(y_test)
return x, y
这适用于任何比例。在本例中,您应该执行percentage = [train_percentage, val_percentage, test_percentage]。
在监督学习的情况下,你可能想拆分X和y(其中X是你的输入,y是基本真理输出)。 你只需要注意在分割之前以同样的方式洗牌X和y。
在这里,X和y在同一个数据帧中,所以我们对它们进行洗牌,将它们分开,并对每个数据帧应用拆分(就像在选择的答案中一样),或者X和y在两个不同的数据帧中,所以我们洗牌X,将y按洗牌X的方式重新排序,并对每个数据帧应用拆分。
# 1st case: df contains X and y (where y is the "target" column of df)
df_shuffled = df.sample(frac=1)
X_shuffled = df_shuffled.drop("target", axis = 1)
y_shuffled = df_shuffled["target"]
# 2nd case: X and y are two separated dataframes
X_shuffled = X.sample(frac=1)
y_shuffled = y[X_shuffled.index]
# We do the split as in the chosen answer
X_train, X_validation, X_test = np.split(X_shuffled, [int(0.6*len(X)),int(0.8*len(X))])
y_train, y_validation, y_test = np.split(y_shuffled, [int(0.6*len(X)),int(0.8*len(X))])
def train_val_test_split(X, y, train_size, val_size, test_size):
X_train_val, X_test, y_train_val, y_test = train_test_split(X, y, test_size = test_size)
relative_train_size = train_size / (val_size + train_size)
X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val,
train_size = relative_train_size, test_size = 1-relative_train_size)
return X_train, X_val, X_test, y_train, y_val, y_test
在这里,我们使用sklearn的train_test_split将数据分割2次
下面是一个Python函数,它将Pandas数据帧划分为分层抽样的训练、验证和测试数据帧。它通过两次调用scikit-learn的函数train_test_split()来执行这种分割。
import pandas as pd
from sklearn.model_selection import train_test_split
def split_stratified_into_train_val_test(df_input, stratify_colname='y',
frac_train=0.6, frac_val=0.15, frac_test=0.25,
random_state=None):
'''
Splits a Pandas dataframe into three subsets (train, val, and test)
following fractional ratios provided by the user, where each subset is
stratified by the values in a specific column (that is, each subset has
the same relative frequency of the values in the column). It performs this
splitting by running train_test_split() twice.
Parameters
----------
df_input : Pandas dataframe
Input dataframe to be split.
stratify_colname : str
The name of the column that will be used for stratification. Usually
this column would be for the label.
frac_train : float
frac_val : float
frac_test : float
The ratios with which the dataframe will be split into train, val, and
test data. The values should be expressed as float fractions and should
sum to 1.0.
random_state : int, None, or RandomStateInstance
Value to be passed to train_test_split().
Returns
-------
df_train, df_val, df_test :
Dataframes containing the three splits.
'''
if frac_train + frac_val + frac_test != 1.0:
raise ValueError('fractions %f, %f, %f do not add up to 1.0' % \
(frac_train, frac_val, frac_test))
if stratify_colname not in df_input.columns:
raise ValueError('%s is not a column in the dataframe' % (stratify_colname))
X = df_input # Contains all columns.
y = df_input[[stratify_colname]] # Dataframe of just the column on which to stratify.
# Split original dataframe into train and temp dataframes.
df_train, df_temp, y_train, y_temp = train_test_split(X,
y,
stratify=y,
test_size=(1.0 - frac_train),
random_state=random_state)
# Split the temp dataframe into val and test dataframes.
relative_frac_test = frac_test / (frac_val + frac_test)
df_val, df_test, y_val, y_test = train_test_split(df_temp,
y_temp,
stratify=y_temp,
test_size=relative_frac_test,
random_state=random_state)
assert len(df_input) == len(df_train) + len(df_val) + len(df_test)
return df_train, df_val, df_test
下面是一个完整的工作示例。
考虑一个数据集,该数据集具有一个标签,您希望在其上执行分层。这个标签在原始数据集中有自己的分布,比如75% foo, 15% bar和10% baz。现在,让我们使用60/20/20的比例将数据集分割为训练、验证和测试子集,其中每个分割保留相同的标签分布。如下图所示:
下面是示例数据集:
df = pd.DataFrame( { 'A': list(range(0, 100)),
'B': list(range(100, 0, -1)),
'label': ['foo'] * 75 + ['bar'] * 15 + ['baz'] * 10 } )
df.head()
# A B label
# 0 0 100 foo
# 1 1 99 foo
# 2 2 98 foo
# 3 3 97 foo
# 4 4 96 foo
df.shape
# (100, 3)
df.label.value_counts()
# foo 75
# bar 15
# baz 10
# Name: label, dtype: int64
现在,让我们从上面调用split_stratified_into_train_val_test()函数,按照60/20/20的比例获取训练、验证和测试数据帧。
df_train, df_val, df_test = \
split_stratified_into_train_val_test(df, stratify_colname='label', frac_train=0.60, frac_val=0.20, frac_test=0.20)
三个数据帧df_train、df_val和df_test包含所有原始行,但它们的大小将遵循上面的比例。
df_train.shape
#(60, 3)
df_val.shape
#(20, 3)
df_test.shape
#(20, 3)
此外,三次分割中的每一次都将具有相同的标签分布,即75% foo, 15% bar和10% baz。
df_train.label.value_counts()
# foo 45
# bar 9
# baz 6
# Name: label, dtype: int64
df_val.label.value_counts()
# foo 15
# bar 3
# baz 2
# Name: label, dtype: int64
df_test.label.value_counts()
# foo 15
# bar 3
# baz 2
# Name: label, dtype: int64
使用train_test_split非常方便,不需要在划分到几个集后执行重新索引,也不需要编写一些额外的代码。上面的最佳答案没有提到使用train_test_split分隔两次而不改变分区大小将不会给出最初预期的分区:
x_train, x_remain = train_test_split(x, test_size=(val_size + test_size))
那么x_remain中的验证集和测试集的部分就会发生变化,可以算作
new_test_size = np.around(test_size / (val_size + test_size), 2)
# To preserve (new_test_size + new_val_size) = 1.0
new_val_size = 1.0 - new_test_size
x_val, x_test = train_test_split(x_remain, test_size=new_test_size)
在这种情况下,将保存所有初始分区。