我有一个熊猫数据框架,我想把它分为3个单独的集。我知道使用sklearn中的train_test_split。交叉验证,可以将数据分为两组(训练和测试)。然而,我无法找到将数据分成三组的任何解决方案。最好是有原始数据的下标。
我知道一个解决办法是使用train_test_split两次,并以某种方式调整索引。但是是否有一种更标准/内置的方法将数据分成3组而不是2组?
我有一个熊猫数据框架,我想把它分为3个单独的集。我知道使用sklearn中的train_test_split。交叉验证,可以将数据分为两组(训练和测试)。然而,我无法找到将数据分成三组的任何解决方案。最好是有原始数据的下标。
我知道一个解决办法是使用train_test_split两次,并以某种方式调整索引。但是是否有一种更标准/内置的方法将数据分成3组而不是2组?
当前回答
在监督学习的情况下,你可能想拆分X和y(其中X是你的输入,y是基本真理输出)。 你只需要注意在分割之前以同样的方式洗牌X和y。
在这里,X和y在同一个数据帧中,所以我们对它们进行洗牌,将它们分开,并对每个数据帧应用拆分(就像在选择的答案中一样),或者X和y在两个不同的数据帧中,所以我们洗牌X,将y按洗牌X的方式重新排序,并对每个数据帧应用拆分。
# 1st case: df contains X and y (where y is the "target" column of df)
df_shuffled = df.sample(frac=1)
X_shuffled = df_shuffled.drop("target", axis = 1)
y_shuffled = df_shuffled["target"]
# 2nd case: X and y are two separated dataframes
X_shuffled = X.sample(frac=1)
y_shuffled = y[X_shuffled.index]
# We do the split as in the chosen answer
X_train, X_validation, X_test = np.split(X_shuffled, [int(0.6*len(X)),int(0.8*len(X))])
y_train, y_validation, y_test = np.split(y_shuffled, [int(0.6*len(X)),int(0.8*len(X))])
其他回答
然而,将数据集分为train、test、cv(0.6、0.2、0.2)的一种方法是使用train_test_split方法两次。
from sklearn.model_selection import train_test_split
x, x_test, y, y_test = train_test_split(xtrain,labels,test_size=0.2,train_size=0.8)
x_train, x_cv, y_train, y_cv = train_test_split(x,y,test_size = 0.25,train_size =0.75)
我能想到的最简单的方法是将分割分数映射到数组下标,如下所示:
train_set = data[:int((len(data)+1)*train_fraction)]
test_set = data[int((len(data)+1)*train_fraction):int((len(data)+1)*(train_fraction+test_fraction))]
val_set = data[int((len(data)+1)*(train_fraction+test_fraction)):]
其中data = random.shuffle(data)
Numpy解决方案。我们将首先洗牌整个数据集(df。Sample (frac=1, random_state=42)),然后将我们的数据集分成以下部分:
60% -列车集, 20% -验证集, 20% -测试装置
In [305]: train, validate, test = \
np.split(df.sample(frac=1, random_state=42),
[int(.6*len(df)), int(.8*len(df))])
In [306]: train
Out[306]:
A B C D E
0 0.046919 0.792216 0.206294 0.440346 0.038960
2 0.301010 0.625697 0.604724 0.936968 0.870064
1 0.642237 0.690403 0.813658 0.525379 0.396053
9 0.488484 0.389640 0.599637 0.122919 0.106505
8 0.842717 0.793315 0.554084 0.100361 0.367465
7 0.185214 0.603661 0.217677 0.281780 0.938540
In [307]: validate
Out[307]:
A B C D E
5 0.806176 0.008896 0.362878 0.058903 0.026328
6 0.145777 0.485765 0.589272 0.806329 0.703479
In [308]: test
Out[308]:
A B C D E
4 0.521640 0.332210 0.370177 0.859169 0.401087
3 0.333348 0.964011 0.083498 0.670386 0.169619
[int(.6*len(df)), int(.8*len(df))] -是numpy.split()的indices_or_sections数组。
下面是一个np.split()使用的小演示-让我们把20个元素的数组分成以下部分:80%,10%,10%:
In [45]: a = np.arange(1, 21)
In [46]: a
Out[46]: array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])
In [47]: np.split(a, [int(.8 * len(a)), int(.9 * len(a))])
Out[47]:
[array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]),
array([17, 18]),
array([19, 20])]
在监督学习的情况下,你可能想拆分X和y(其中X是你的输入,y是基本真理输出)。 你只需要注意在分割之前以同样的方式洗牌X和y。
在这里,X和y在同一个数据帧中,所以我们对它们进行洗牌,将它们分开,并对每个数据帧应用拆分(就像在选择的答案中一样),或者X和y在两个不同的数据帧中,所以我们洗牌X,将y按洗牌X的方式重新排序,并对每个数据帧应用拆分。
# 1st case: df contains X and y (where y is the "target" column of df)
df_shuffled = df.sample(frac=1)
X_shuffled = df_shuffled.drop("target", axis = 1)
y_shuffled = df_shuffled["target"]
# 2nd case: X and y are two separated dataframes
X_shuffled = X.sample(frac=1)
y_shuffled = y[X_shuffled.index]
# We do the split as in the chosen answer
X_train, X_validation, X_test = np.split(X_shuffled, [int(0.6*len(X)),int(0.8*len(X))])
y_train, y_validation, y_test = np.split(y_shuffled, [int(0.6*len(X)),int(0.8*len(X))])
def train_val_test_split(X, y, train_size, val_size, test_size):
X_train_val, X_test, y_train_val, y_test = train_test_split(X, y, test_size = test_size)
relative_train_size = train_size / (val_size + train_size)
X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val,
train_size = relative_train_size, test_size = 1-relative_train_size)
return X_train, X_val, X_test, y_train, y_val, y_test
在这里,我们使用sklearn的train_test_split将数据分割2次