我有一个熊猫数据框架,我想把它分为3个单独的集。我知道使用sklearn中的train_test_split。交叉验证,可以将数据分为两组(训练和测试)。然而,我无法找到将数据分成三组的任何解决方案。最好是有原始数据的下标。

我知道一个解决办法是使用train_test_split两次,并以某种方式调整索引。但是是否有一种更标准/内置的方法将数据分成3组而不是2组?


当前回答

在监督学习的情况下,你可能想拆分X和y(其中X是你的输入,y是基本真理输出)。 你只需要注意在分割之前以同样的方式洗牌X和y。

在这里,X和y在同一个数据帧中,所以我们对它们进行洗牌,将它们分开,并对每个数据帧应用拆分(就像在选择的答案中一样),或者X和y在两个不同的数据帧中,所以我们洗牌X,将y按洗牌X的方式重新排序,并对每个数据帧应用拆分。

# 1st case: df contains X and y (where y is the "target" column of df)
df_shuffled = df.sample(frac=1)
X_shuffled = df_shuffled.drop("target", axis = 1)
y_shuffled = df_shuffled["target"]

# 2nd case: X and y are two separated dataframes
X_shuffled = X.sample(frac=1)
y_shuffled = y[X_shuffled.index]

# We do the split as in the chosen answer
X_train, X_validation, X_test = np.split(X_shuffled, [int(0.6*len(X)),int(0.8*len(X))])
y_train, y_validation, y_test = np.split(y_shuffled, [int(0.6*len(X)),int(0.8*len(X))])

其他回答

然而,将数据集分为train、test、cv(0.6、0.2、0.2)的一种方法是使用train_test_split方法两次。

from sklearn.model_selection import train_test_split

x, x_test, y, y_test = train_test_split(xtrain,labels,test_size=0.2,train_size=0.8)
x_train, x_cv, y_train, y_cv = train_test_split(x,y,test_size = 0.25,train_size =0.75)

考虑到df id你的原始数据帧:

1 -首先你在训练和测试之间分割数据(10%):

my_test_size = 0.10

X_train_, X_test, y_train_, y_test = train_test_split(
    df.index.values,
    df.label.values,
    test_size=my_test_size,
    random_state=42,
    stratify=df.label.values,    
)

2 -然后你在训练和验证之间分割训练集(20%):

my_val_size = 0.20

X_train, X_val, y_train, y_val = train_test_split(
    df.loc[X_train_].index.values,
    df.loc[X_train_].label.values,
    test_size=my_val_size,
    random_state=42,
    stratify=df.loc[X_train_].label.values,  
)

3 -然后,根据上述步骤中生成的索引对原始数据帧进行切片:

# data_type is not necessary. 
df['data_type'] = ['not_set']*df.shape[0]
df.loc[X_train, 'data_type'] = 'train'
df.loc[X_val, 'data_type'] = 'val'
df.loc[X_test, 'data_type'] = 'test'

结果是这样的:

注意:此解决方案使用问题中提到的解决方案。

Numpy解决方案。我们将首先洗牌整个数据集(df。Sample (frac=1, random_state=42)),然后将我们的数据集分成以下部分:

60% -列车集, 20% -验证集, 20% -测试装置


In [305]: train, validate, test = \
              np.split(df.sample(frac=1, random_state=42), 
                       [int(.6*len(df)), int(.8*len(df))])

In [306]: train
Out[306]:
          A         B         C         D         E
0  0.046919  0.792216  0.206294  0.440346  0.038960
2  0.301010  0.625697  0.604724  0.936968  0.870064
1  0.642237  0.690403  0.813658  0.525379  0.396053
9  0.488484  0.389640  0.599637  0.122919  0.106505
8  0.842717  0.793315  0.554084  0.100361  0.367465
7  0.185214  0.603661  0.217677  0.281780  0.938540

In [307]: validate
Out[307]:
          A         B         C         D         E
5  0.806176  0.008896  0.362878  0.058903  0.026328
6  0.145777  0.485765  0.589272  0.806329  0.703479

In [308]: test
Out[308]:
          A         B         C         D         E
4  0.521640  0.332210  0.370177  0.859169  0.401087
3  0.333348  0.964011  0.083498  0.670386  0.169619

[int(.6*len(df)), int(.8*len(df))] -是numpy.split()的indices_or_sections数组。

下面是一个np.split()使用的小演示-让我们把20个元素的数组分成以下部分:80%,10%,10%:

In [45]: a = np.arange(1, 21)

In [46]: a
Out[46]: array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

In [47]: np.split(a, [int(.8 * len(a)), int(.9 * len(a))])
Out[47]:
[array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16]),
 array([17, 18]),
 array([19, 20])]

回答任意数量的子集:

def _separate_dataset(patches, label_patches, percentage, shuffle: bool = True):
    """
    :param patches: data patches
    :param label_patches: label patches
    :param percentage: list of percentages for each value, example [0.9, 0.02, 0.08] to get 90% train, 2% val and 8% test.
    :param shuffle: Shuffle dataset before split.
    :return: tuple of two lists of size = len(percentage), one with data x and other with labels y.
    """
    x_test = patches
    y_test = label_patches
    percentage = list(percentage)       # need it to be mutable
    assert sum(percentage) == 1., f"percentage must add to 1, but it adds to sum{percentage} = {sum(percentage)}"
    x = []
    y = []
    for i, per in enumerate(percentage[:-1]):
        x_train, x_test, y_train, y_test = train_test_split(x_test, y_test, test_size=1-per, shuffle=shuffle)
        percentage[i+1:] = [value / (1-percentage[i]) for value in percentage[i+1:]]
        x.append(x_train)
        y.append(y_train)
    x.append(x_test)
    y.append(y_test)
    return x, y

这适用于任何比例。在本例中,您应该执行percentage = [train_percentage, val_percentage, test_percentage]。

使用train_test_split非常方便,不需要在划分到几个集后执行重新索引,也不需要编写一些额外的代码。上面的最佳答案没有提到使用train_test_split分隔两次而不改变分区大小将不会给出最初预期的分区:

x_train, x_remain = train_test_split(x, test_size=(val_size + test_size))

那么x_remain中的验证集和测试集的部分就会发生变化,可以算作

new_test_size = np.around(test_size / (val_size + test_size), 2)
# To preserve (new_test_size + new_val_size) = 1.0 
new_val_size = 1.0 - new_test_size

x_val, x_test = train_test_split(x_remain, test_size=new_test_size)

在这种情况下,将保存所有初始分区。