有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。


当前回答

如果你正在寻找速度,这里有一个方法可能会帮助你。

对三角形顶点的纵坐标进行排序。这最多需要三次比较。设Y0 Y1 Y2是三个排好序的值。通过画三条水平线,你可以把这个平面分成两个半平面和两块平板。设Y为查询点的纵坐标。

if Y < Y1
    if Y <= Y0 -> the point lies in the upper half plane, outside the triangle; you are done
    else Y > Y0 -> the point lies in the upper slab
else
    if Y >= Y2 -> the point lies in the lower half plane, outside the triangle; you are done
    else Y < Y2 -> the point lies in the lower slab

又花费了两次比较。如你所见,在“边界板”之外的点可以快速拒绝。

可选地,您可以在横坐标上提供一个测试,以便在左侧和右侧快速拒绝(X <= X0'或X >= X2')。这将同时实现一个快速的包围框测试,但您还需要在横坐标上排序。

最终,你需要计算给定点的符号,相对于三角形的两边,划定相关的板(上或下)。该测试形式为:

((X - Xi) * (Y - Yj) > (X - Xi) * (Y - Yj)) == ((X - Xi) * (Y - Yk) > (X - Xi) * (Y - Yk))

关于i, j, k组合的完整讨论(根据排序的结果,有六种组合)超出了这个答案的范围,“留给读者练习”;为了提高效率,它们应该被硬编码。

如果您认为这个解决方案很复杂,请注意,它主要涉及简单的比较(其中一些可以预先计算),加上6个减法和4个乘法,以防边界盒测试失败。后者的代价是难以克服的,因为在最坏的情况下,你无法避免将测试点与两边进行比较(在其他答案中,没有哪种方法的代价更低,有些方法的代价更低,比如15个减法和6个乘法,有时是除法)。

更新: 用剪切变换更快

如上所述,您可以使用两次比较快速定位由三个顶点纵坐标分隔的四个水平带之一内的点。

您可以选择执行一个或两个额外的X测试来检查边界框(虚线)的内部性。

然后考虑X'= X - m Y, Y' = Y给出的“剪切”变换,其中m是最高边的斜率DX/DY。这个变换会使三角形的这条边是垂直的。因为你知道你在中间水平线的哪一边,所以只用三角形的一条边来测试符号就足够了。

假设你预先计算了斜率m,以及剪切三角形顶点的X'和边方程的系数X = m Y + p,你将需要在最坏的情况下

纵向分类的两个纵坐标比较; 可选的一个或两个横坐标比较用于边界框拒绝; 计算X' = X - m Y; 与剪切三角形的横坐标作一两次比较; 一个符号测试X >< m' Y + p'对剪切三角形的相关边。

其他回答

一般来说,最简单(也是最优)的算法是检查由边创建的半平面的哪一边是点。

以下是关于GameDev的一些高质量信息,包括性能问题。

这里有一些代码让你开始:

float sign (fPoint p1, fPoint p2, fPoint p3)
{
    return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
}

bool PointInTriangle (fPoint pt, fPoint v1, fPoint v2, fPoint v3)
{
    float d1, d2, d3;
    bool has_neg, has_pos;

    d1 = sign(pt, v1, v2);
    d2 = sign(pt, v2, v3);
    d3 = sign(pt, v3, v1);

    has_neg = (d1 < 0) || (d2 < 0) || (d3 < 0);
    has_pos = (d1 > 0) || (d2 > 0) || (d3 > 0);

    return !(has_neg && has_pos);
}

这是确定一个点是在三角形的内、外还是在三角形的臂上的最简单的概念。

用行列式确定三角形内的点:

最简单的工作代码:

#-*- coding: utf-8 -*-

import numpy as np

tri_points = [(1,1),(2,3),(3,1)]

def pisinTri(point,tri_points):
    Dx , Dy = point

    A,B,C = tri_points
    Ax, Ay = A
    Bx, By = B
    Cx, Cy = C

    M1 = np.array([ [Dx - Bx, Dy - By, 0],
                    [Ax - Bx, Ay - By, 0],
                    [1      , 1      , 1]
                  ])

    M2 = np.array([ [Dx - Ax, Dy - Ay, 0],
                    [Cx - Ax, Cy - Ay, 0],
                    [1      , 1      , 1]
                  ])

    M3 = np.array([ [Dx - Cx, Dy - Cy, 0],
                    [Bx - Cx, By - Cy, 0],
                    [1      , 1      , 1]
                  ])

    M1 = np.linalg.det(M1)
    M2 = np.linalg.det(M2)
    M3 = np.linalg.det(M3)
    print(M1,M2,M3)

    if(M1 == 0 or M2 == 0 or M3 ==0):
            print("Point: ",point," lies on the arms of Triangle")
    elif((M1 > 0 and M2 > 0 and M3 > 0)or(M1 < 0 and M2 < 0 and M3 < 0)):
            #if products is non 0 check if all of their sign is same
            print("Point: ",point," lies inside the Triangle")
    else:
            print("Point: ",point," lies outside the Triangle")

print("Vertices of Triangle: ",tri_points)
points = [(0,0),(1,1),(2,3),(3,1),(2,2),(4,4),(1,0),(0,4)]
for c in points:
    pisinTri(c,tri_points)

一个简单的方法是:

找出连接 分别指向三角形的三个点 顶点和夹角之和 这些向量。如果它们的和 角度是2*那么点是 在三角形里面。

两个解释替代方案的好网站是:

黑卒和沃尔夫勒姆

If you know the co-ordinates of the three vertices and the co-ordinates of the specific point, then you can get the area of the complete triangle. Afterwards, calculate the area of the three triangle segments (one point being the point given and the other two being any two vertices of the triangle). Thus, you will get the area of the three triangle segments. If the sum of these areas are equal to the total area (that you got previously), then, the point should be inside the triangle. Otherwise, the point is not inside the triangle. This should work. If there are any issues, let me know. Thank you.

重心法Java版:

class Triangle {
    Triangle(double x1, double y1, double x2, double y2, double x3,
            double y3) {
        this.x3 = x3;
        this.y3 = y3;
        y23 = y2 - y3;
        x32 = x3 - x2;
        y31 = y3 - y1;
        x13 = x1 - x3;
        det = y23 * x13 - x32 * y31;
        minD = Math.min(det, 0);
        maxD = Math.max(det, 0);
    }

    boolean contains(double x, double y) {
        double dx = x - x3;
        double dy = y - y3;
        double a = y23 * dx + x32 * dy;
        if (a < minD || a > maxD)
            return false;
        double b = y31 * dx + x13 * dy;
        if (b < minD || b > maxD)
            return false;
        double c = det - a - b;
        if (c < minD || c > maxD)
            return false;
        return true;
    }

    private final double x3, y3;
    private final double y23, x32, y31, x13;
    private final double det, minD, maxD;
}

上面的代码可以准确地处理整数,假设没有溢出。它也适用于顺时针和逆时针三角形。它不适用于共线三角形(但您可以通过测试det==0来检查)。

如果你要用同一个三角形测试不同的点,以重心为中心的版本是最快的。

重心版本在3个三角形点上是不对称的,所以它可能不如Kornel Kisielewicz的边缘半平面版本一致,因为浮点舍入误差。

图片来源:我根据维基百科关于重心坐标的文章制作了上面的代码。