有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。


当前回答

如果你正在寻找速度,这里有一个方法可能会帮助你。

对三角形顶点的纵坐标进行排序。这最多需要三次比较。设Y0 Y1 Y2是三个排好序的值。通过画三条水平线,你可以把这个平面分成两个半平面和两块平板。设Y为查询点的纵坐标。

if Y < Y1
    if Y <= Y0 -> the point lies in the upper half plane, outside the triangle; you are done
    else Y > Y0 -> the point lies in the upper slab
else
    if Y >= Y2 -> the point lies in the lower half plane, outside the triangle; you are done
    else Y < Y2 -> the point lies in the lower slab

又花费了两次比较。如你所见,在“边界板”之外的点可以快速拒绝。

可选地,您可以在横坐标上提供一个测试,以便在左侧和右侧快速拒绝(X <= X0'或X >= X2')。这将同时实现一个快速的包围框测试,但您还需要在横坐标上排序。

最终,你需要计算给定点的符号,相对于三角形的两边,划定相关的板(上或下)。该测试形式为:

((X - Xi) * (Y - Yj) > (X - Xi) * (Y - Yj)) == ((X - Xi) * (Y - Yk) > (X - Xi) * (Y - Yk))

关于i, j, k组合的完整讨论(根据排序的结果,有六种组合)超出了这个答案的范围,“留给读者练习”;为了提高效率,它们应该被硬编码。

如果您认为这个解决方案很复杂,请注意,它主要涉及简单的比较(其中一些可以预先计算),加上6个减法和4个乘法,以防边界盒测试失败。后者的代价是难以克服的,因为在最坏的情况下,你无法避免将测试点与两边进行比较(在其他答案中,没有哪种方法的代价更低,有些方法的代价更低,比如15个减法和6个乘法,有时是除法)。

更新: 用剪切变换更快

如上所述,您可以使用两次比较快速定位由三个顶点纵坐标分隔的四个水平带之一内的点。

您可以选择执行一个或两个额外的X测试来检查边界框(虚线)的内部性。

然后考虑X'= X - m Y, Y' = Y给出的“剪切”变换,其中m是最高边的斜率DX/DY。这个变换会使三角形的这条边是垂直的。因为你知道你在中间水平线的哪一边,所以只用三角形的一条边来测试符号就足够了。

假设你预先计算了斜率m,以及剪切三角形顶点的X'和边方程的系数X = m Y + p,你将需要在最坏的情况下

纵向分类的两个纵坐标比较; 可选的一个或两个横坐标比较用于边界框拒绝; 计算X' = X - m Y; 与剪切三角形的横坐标作一两次比较; 一个符号测试X >< m' Y + p'对剪切三角形的相关边。

其他回答

python中的其他函数,比Developer的方法更快(至少对我来说),并受到Cédric Dufour解决方案的启发:

def ptInTriang(p_test, p0, p1, p2):       
     dX = p_test[0] - p0[0]
     dY = p_test[1] - p0[1]
     dX20 = p2[0] - p0[0]
     dY20 = p2[1] - p0[1]
     dX10 = p1[0] - p0[0]
     dY10 = p1[1] - p0[1]

     s_p = (dY20*dX) - (dX20*dY)
     t_p = (dX10*dY) - (dY10*dX)
     D = (dX10*dY20) - (dY10*dX20)

     if D > 0:
         return (  (s_p >= 0) and (t_p >= 0) and (s_p + t_p) <= D  )
     else:
         return (  (s_p <= 0) and (t_p <= 0) and (s_p + t_p) >= D  )

你可以用:

X_size = 64
Y_size = 64
ax_x = np.arange(X_size).astype(np.float32)
ax_y = np.arange(Y_size).astype(np.float32)
coords=np.meshgrid(ax_x,ax_y)
points_unif = (coords[0].reshape(X_size*Y_size,),coords[1].reshape(X_size*Y_size,))
p_test = np.array([0 , 0])
p0 = np.array([22 , 8]) 
p1 = np.array([12 , 55]) 
p2 = np.array([7 , 19]) 
fig = plt.figure(dpi=300)
for i in range(0,X_size*Y_size):
    p_test[0] = points_unif[0][i]
    p_test[1] = points_unif[1][i]
    if ptInTriang(p_test, p0, p1, p2):
        plt.plot(p_test[0], p_test[1], '.g')
    else:
        plt.plot(p_test[0], p_test[1], '.r')

绘制网格需要花费很多时间,但是该网格在0.0195319652557秒内测试,而开发人员代码为0.0844349861145秒。

最后是代码注释:

# Using barycentric coordintes, any point inside can be described as:
# X = p0.x * r + p1.x * s + p2.x * t
# Y = p0.y * r + p1.y * s + p2.y * t
# with:
# r + s + t = 1  and 0 < r,s,t < 1
# then: r = 1 - s - t
# and then:
# X = p0.x * (1 - s - t) + p1.x * s + p2.x * t
# Y = p0.y * (1 - s - t) + p1.y * s + p2.y * t
#
# X = p0.x + (p1.x-p0.x) * s + (p2.x-p0.x) * t
# Y = p0.y + (p1.y-p0.y) * s + (p2.y-p0.y) * t
#
# X - p0.x = (p1.x-p0.x) * s + (p2.x-p0.x) * t
# Y - p0.y = (p1.y-p0.y) * s + (p2.y-p0.y) * t
#
# we have to solve:
#
# [ X - p0.x ] = [(p1.x-p0.x)   (p2.x-p0.x)] * [ s ]
# [ Y - p0.Y ]   [(p1.y-p0.y)   (p2.y-p0.y)]   [ t ]
#
# ---> b = A*x ; ---> x = A^-1 * b
# 
# [ s ] =   A^-1  * [ X - p0.x ]
# [ t ]             [ Y - p0.Y ]
#
# A^-1 = 1/D * adj(A)
#
# The adjugate of A:
#
# adj(A)   =   [(p2.y-p0.y)   -(p2.x-p0.x)]
#              [-(p1.y-p0.y)   (p1.x-p0.x)]
#
# The determinant of A:
#
# D = (p1.x-p0.x)*(p2.y-p0.y) - (p1.y-p0.y)*(p2.x-p0.x)
#
# Then:
#
# s_p = { (p2.y-p0.y)*(X - p0.x) - (p2.x-p0.x)*(Y - p0.Y) }
# t_p = { (p1.x-p0.x)*(Y - p0.Y) - (p1.y-p0.y)*(X - p0.x) }
#
# s = s_p / D
# t = t_p / D
#
# Recovering r:
#
# r = 1 - (s_p + t_p)/D
#
# Since we only want to know if it is insidem not the barycentric coordinate:
#
# 0 < 1 - (s_p + t_p)/D < 1
# 0 < (s_p + t_p)/D < 1
# 0 < (s_p + t_p) < D
#
# The condition is:
# if D > 0:
#     s_p > 0 and t_p > 0 and (s_p + t_p) < D
# else:
#     s_p < 0 and t_p < 0 and (s_p + t_p) > D
#
# s_p = { dY20*dX - dX20*dY }
# t_p = { dX10*dY - dY10*dX }
# D = dX10*dY20 - dY10*dX20
bool point2Dtriangle(double e,double f, double a,double b,double c, double g,double h,double i, double v, double w){
    /* inputs: e=point.x, f=point.y
               a=triangle.Ax, b=triangle.Bx, c=triangle.Cx 
               g=triangle.Ay, h=triangle.By, i=triangle.Cy */
    v = 1 - (f * (b - c) + h * (c - e) + i * (e - b)) / (g * (b - c) + h * (c - a) + i * (a - b));
    w = (f * (a - b) + g * (b - e) + h * (e - a)) / (g * (b - c) + h * (c - a) + i * (a - b));
    if (*v > -0.0 && *v < 1.0000001 && *w > -0.0 && *w < *v) return true;//is inside
    else return false;//is outside
    return 0;
} 

从质心转换而来的几乎完美的笛卡尔坐标 在*v (x)和*w (y)双精度内导出。 在每种情况下,两个导出双精度对象前面都应该有一个*字符,可能是*v和*w 代码也可以用于四边形的另一个三角形。 特此签名只写三角形abc从顺时针abcd的四边形。

A---B
|..\\.o|  
|....\\.| 
D---C 

o点在ABC三角形内 对于带有第二个三角形的测试,将此函数称为CDA方向,*v=1-*v后的结果应正确;* w = 1 - * w;为了四合院

我要做的是预先计算三个面法线,

在三维中通过边向量和面法向量的叉乘得到。 通过简单地交换分量和负一个,

对于任意一条边的内/外都是边法线和点到点向量的点积,改变符号。重复其他两(或更多)面。

好处:

在同一个三角形上进行多点测试,很多都是预先计算好的。 早期拒签的常见情况是外分多内分。(如果点分布偏向一侧,可以先测试这一侧。)

有一些恼人的边条件,即一个点恰好在两个相邻三角形的公共边上。这个点不可能在两个三角形中,也不可能不在两个三角形中。你需要一种任意但一致的方式来分配点。例如,画一条横线穿过这个点。如果这条直线与三角形的另一边在右侧相交,则该点被视为在三角形内。如果交点在左边,则该点在外面。

如果该点所在的直线是水平的,则使用above/below。

如果该点位于多个三角形的公共顶点上,则使用该点与中心点形成的角最小的三角形。

更有趣的是:三个点可以在一条直线上(零度),例如(0,0)-(0,10)-(0,5)。在三角剖分算法中,“耳朵”(0,10)必须被切掉,生成的“三角形”是直线的退化情况。

bool isInside( float x, float y, float x1, float y1, float x2, float y2, float x3, float y3 ) {
  float l1 = (x-x1)*(y3-y1) - (x3-x1)*(y-y1), 
    l2 = (x-x2)*(y1-y2) - (x1-x2)*(y-y2), 
    l3 = (x-x3)*(y2-y3) - (x2-x3)*(y-y3);
  return (l1>0 && l2>0  && l3>0) || (l1<0 && l2<0 && l3<0);
}

没有比这更有效率的了!三角形的每边都可以有独立的位置和方向,因此需要进行l1、l2和l3三个计算,每个计算需要进行2次乘法。一旦l1, l2和l3是已知的,结果只是一些基本的比较和布尔运算。