我有一个包含15个数字的列表,我需要编写一些代码来生成这些数字的所有32,768种组合。

我已经找到了一些代码(通过谷歌搜索),显然做了我正在寻找的,但我发现代码相当不透明,并谨慎使用它。而且我觉得肯定有更优雅的解决方案。

我唯一想到的就是循环十进制整数1-32768并将其转换为二进制,并使用二进制表示作为筛选器来挑选适当的数字。

有人知道更好的办法吗?使用map(),也许?


当前回答

不使用itertools:

def combine(inp):
    return combine_helper(inp, [], [])


def combine_helper(inp, temp, ans):
    for i in range(len(inp)):
        current = inp[i]
        remaining = inp[i + 1:]
        temp.append(current)
        ans.append(tuple(temp))
        combine_helper(remaining, temp, ans)
        temp.pop()
    return ans


print(combine(['a', 'b', 'c', 'd']))

其他回答

我同意Dan H的观点,Ben确实要求所有的组合。itertools.combination()不会给出所有的组合。

另一个问题是,如果输入iterable很大,返回一个生成器而不是列表中的所有内容可能会更好:

iterable = range(10)
for s in xrange(len(iterable)+1):
  for comb in itertools.combinations(iterable, s):
    yield comb

还可以使用more_itertools包中的powerset函数。

from more_itertools import powerset

l = [1,2,3]
list(powerset(l))

# [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]

我们也可以验证,它满足OP的要求

from more_itertools import ilen

assert ilen(powerset(range(15))) == 32_768

这种方法可以很容易地移植到所有支持递归的编程语言中(没有itertools,没有yield,没有列表理解):

def combs(a):
    if len(a) == 0:
        return [[]]
    cs = []
    for c in combs(a[1:]):
        cs += [c, c+[a[0]]]
    return cs

>>> combs([1,2,3,4,5])
[[], [1], [2], [2, 1], [3], [3, 1], [3, 2], ..., [5, 4, 3, 2, 1]]

这个怎么样?使用字符串而不是列表,但同样的事情..string可以像Python中的列表一样处理:

def comb(s, res):
    if not s: return
    res.add(s)
    for i in range(0, len(s)):
        t = s[0:i] + s[i + 1:]
        comb(t, res)

res = set()
comb('game', res) 

print(res)

我喜欢这个问题,因为有很多方法来实现它。我决定为未来创造一个参考答案。

在生产中使用什么?

intertools的文档有一个独立的例子,为什么不在你的代码中使用它呢?一些人建议使用more_itertools。Powerset,但它具有完全相同的实现!如果我是你,我不会为一个小东西安装整个软件包。也许这是最好的方法:

import itertools

def powerset(iterable):
    "powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
    s = list(iterable)
    return itertools.chain.from_iterable(combinations(s, r) for r in range(len(s)+1))

其他可能的方法

方法0:使用组合

import itertools

def subsets(nums):
    result = []
    for i in range(len(nums) + 1):
        result += itertools.combinations(nums, i)
    return result

方法1:简单的递归

def subsets(nums):
    result = []

    def powerset(alist, index, curr):
        if index == len(alist):
            result.append(curr)
            return

        powerset(alist, index + 1, curr + [alist[index]])
        powerset(alist, index + 1, curr)

    powerset(nums, 0, [])
    return result

方法2:回溯

def subsets(nums):
    result = []

    def backtrack(index, curr, k):
        if len(curr) == k:
            result.append(list(curr))
            return
        for i in range(index, len(nums)):
            curr.append(nums[i])
            backtrack(i + 1, curr, k)
            curr.pop()

    for k in range(len(nums) + 1):
        backtrack(0, [], k)
    return result

or

def subsets(nums):
    result = []

    def dfs(nums, index, path, result):
        result.append(path)
        for i in range(index, len(nums)):
            dfs(nums, i + 1, path + [nums[i]], result)

    dfs(nums, 0, [], result)
    return result

方法3:位掩码

def subsets(nums):
    res = []
    n = len(nums)
    for i in range(1 << n):
        aset = []
        for j in range(n):
            value = (1 << j) & i  # value = (i >> j) & 1
            if value:
                aset.append(nums[j])
        res.append(aset)
    return res

或者(不是位掩码,直觉上是2^n个子集)

def subsets(nums):
    subsets = []
    expected_subsets = 2 ** len(nums)

    def generate_subset(subset, nums):
        if len(subsets) >= expected_subsets:
            return
        if len(subsets) < expected_subsets:
            subsets.append(subset)
        for i in range(len(nums)):
            generate_subset(subset + [nums[i]], nums[i + 1:])

    generate_subset([], nums)
    return subsets

方法4:级联

def subsets(nums):
    result = [[]]
    for i in range(len(nums)):
        for j in range(len(result)):
            subset = list(result[j])
            subset.append(nums[i])
            result.append(subset)
    return result