最近我似乎和合作者分享了很多代码。他们中的许多人是新手/中级R用户,并没有意识到他们必须安装他们还没有的包。
是否有一种优雅的方式来调用installed.packages(),比较那些我正在加载和安装如果丢失?
最近我似乎和合作者分享了很多代码。他们中的许多人是新手/中级R用户,并没有意识到他们必须安装他们还没有的包。
是否有一种优雅的方式来调用installed.packages(),比较那些我正在加载和安装如果丢失?
当前回答
今天,我偶然发现了rlang包提供的两个方便函数,即is_installed()和check_installed()。
从帮助页面(强调添加):
These functions check that packages are installed with minimal side effects. If installed, the packages will be loaded but not attached. is_installed() doesn't interact with the user. It simply returns TRUE or FALSE depending on whether the packages are installed. In interactive sessions, check_installed() asks the user whether to install missing packages. If the user accepts, the packages are installed [...]. If the session is non interactive or if the user chooses not to install the packages, the current evaluation is aborted.
interactive()
#> [1] FALSE
rlang::is_installed(c("dplyr"))
#> [1] TRUE
rlang::is_installed(c("foobarbaz"))
#> [1] FALSE
rlang::check_installed(c("dplyr"))
rlang::check_installed(c("foobarbaz"))
#> Error:
#> ! The package `foobarbaz` is required.
由reprex包在2022-03-25创建(v2.0.1)
其他回答
我使用以下将检查包是否安装和依赖项是否更新,然后加载包。
p<-c('ggplot2','Rcpp')
install_package<-function(pack)
{if(!(pack %in% row.names(installed.packages())))
{
update.packages(ask=F)
install.packages(pack,dependencies=T)
}
require(pack,character.only=TRUE)
}
for(pack in p) {install_package(pack)}
completeFun <- function(data, desiredCols) {
completeVec <- complete.cases(data[, desiredCols])
return(data[completeVec, ])
}
这就是rbundler包的目的:提供一种方法来控制为特定项目安装的包。现在,这个包使用devtools功能将包安装到项目的目录中。该功能类似于Ruby的捆绑器。
如果你的项目是一个包(推荐),那么你所要做的就是加载rbundler并捆绑包。bundle函数将查看包的DESCRIPTION文件,以确定要捆绑哪些包。
library(rbundler)
bundle('.', repos="http://cran.us.r-project.org")
现在这些包将安装在. rbundle目录中。
如果你的项目不是一个包,那么你可以在项目的根目录中创建一个DESCRIPTION文件,其中包含一个Depends字段,列出你想要安装的包(包括可选的版本信息):
Depends: ggplot2 (>= 0.9.2), arm, glmnet
如果你对这个项目感兴趣,这里是github回购:rbundler。
我使用以下函数安装包,如果require("<包>")退出包未发现错误。它将查询- CRAN和Bioconductor存储库,以查找丢失的包。
改编自约书亚·威利的原著, http://r.789695.n4.nabble.com/Install-package-automatically-if-not-there-td2267532.html
install.packages.auto <- function(x) {
x <- as.character(substitute(x))
if(isTRUE(x %in% .packages(all.available=TRUE))) {
eval(parse(text = sprintf("require(\"%s\")", x)))
} else {
#update.packages(ask= FALSE) #update installed packages.
eval(parse(text = sprintf("install.packages(\"%s\", dependencies = TRUE)", x)))
}
if(isTRUE(x %in% .packages(all.available=TRUE))) {
eval(parse(text = sprintf("require(\"%s\")", x)))
} else {
source("http://bioconductor.org/biocLite.R")
#biocLite(character(), ask=FALSE) #update installed packages.
eval(parse(text = sprintf("biocLite(\"%s\")", x)))
eval(parse(text = sprintf("require(\"%s\")", x)))
}
}
例子:
install.packages.auto(qvalue) # from bioconductor
install.packages.auto(rNMF) # from CRAN
注:更新。packages(ask =FALSE) & biocLite(character(), ask=FALSE)将更新系统上所有已安装的软件包。这可能需要很长时间,并将其视为一个完整的R升级,这可能并不总是有保障的!
48 lapply_install_and_load <- function (package1, ...)
49 {
50 #
51 # convert arguments to vector
52 #
53 packages <- c(package1, ...)
54 #
55 # check if loaded and installed
56 #
57 loaded <- packages %in% (.packages())
58 names(loaded) <- packages
59 #
60 installed <- packages %in% rownames(installed.packages())
61 names(installed) <- packages
62 #
63 # start loop to determine if each package is installed
64 #
65 load_it <- function (p, loaded, installed)
66 {
67 if (loaded[p])
68 {
69 print(paste(p, "loaded"))
70 }
71 else
72 {
73 print(paste(p, "not loaded"))
74 if (installed[p])
75 {
76 print(paste(p, "installed"))
77 do.call("library", list(p))
78 }
79 else
80 {
81 print(paste(p, "not installed"))
82 install.packages(p)
83 do.call("library", list(p))
84 }
85 }
86 }
87 #
88 lapply(packages, load_it, loaded, installed)
89 }
您可以简单地使用setdiff函数获取未安装的包,然后安装它们。在下面的示例中,我们在安装ggplot2和Rcpp包之前检查它们是否已经安装。
unavailable <- setdiff(c("ggplot2", "Rcpp"), rownames(installed.packages()))
install.packages(unavailable)
在一行中,上面的内容可以写成:
install.packages(setdiff(c("ggplot2", "Rcpp"), rownames(installed.packages())))