最近我似乎和合作者分享了很多代码。他们中的许多人是新手/中级R用户,并没有意识到他们必须安装他们还没有的包。
是否有一种优雅的方式来调用installed.packages(),比较那些我正在加载和安装如果丢失?
最近我似乎和合作者分享了很多代码。他们中的许多人是新手/中级R用户,并没有意识到他们必须安装他们还没有的包。
是否有一种优雅的方式来调用installed.packages(),比较那些我正在加载和安装如果丢失?
当前回答
虽然Shane的回答很好,但对于我的一个项目,我需要自动删除输出消息、警告和安装包。我终于设法得到这个脚本:
InstalledPackage <- function(package)
{
available <- suppressMessages(suppressWarnings(sapply(package, require, quietly = TRUE, character.only = TRUE, warn.conflicts = FALSE)))
missing <- package[!available]
if (length(missing) > 0) return(FALSE)
return(TRUE)
}
CRANChoosen <- function()
{
return(getOption("repos")["CRAN"] != "@CRAN@")
}
UsePackage <- function(package, defaultCRANmirror = "http://cran.at.r-project.org")
{
if(!InstalledPackage(package))
{
if(!CRANChoosen())
{
chooseCRANmirror()
if(!CRANChoosen())
{
options(repos = c(CRAN = defaultCRANmirror))
}
}
suppressMessages(suppressWarnings(install.packages(package)))
if(!InstalledPackage(package)) return(FALSE)
}
return(TRUE)
}
Use:
libraries <- c("ReadImages", "ggplot2")
for(library in libraries)
{
if(!UsePackage(library))
{
stop("Error!", library)
}
}
其他回答
这就是rbundler包的目的:提供一种方法来控制为特定项目安装的包。现在,这个包使用devtools功能将包安装到项目的目录中。该功能类似于Ruby的捆绑器。
如果你的项目是一个包(推荐),那么你所要做的就是加载rbundler并捆绑包。bundle函数将查看包的DESCRIPTION文件,以确定要捆绑哪些包。
library(rbundler)
bundle('.', repos="http://cran.us.r-project.org")
现在这些包将安装在. rbundle目录中。
如果你的项目不是一个包,那么你可以在项目的根目录中创建一个DESCRIPTION文件,其中包含一个Depends字段,列出你想要安装的包(包括可选的版本信息):
Depends: ggplot2 (>= 0.9.2), arm, glmnet
如果你对这个项目感兴趣,这里是github回购:rbundler。
下面这个简单的函数非常好用:
usePackage<-function(p){
# load a package if installed, else load after installation.
# Args:
# p: package name in quotes
if (!is.element(p, installed.packages()[,1])){
print(paste('Package:',p,'Not found, Installing Now...'))
install.packages(p, dep = TRUE)}
print(paste('Loading Package :',p))
require(p, character.only = TRUE)
}
(不是我的,一段时间前在网上找到了这个,从那时起就一直在使用它。不确定原始来源)
是的。如果您有软件包列表,请将其与installed.packages()[,"Package"]的输出进行比较,然后安装缺少的软件包。就像这样:
list.of.packages <- c("ggplot2", "Rcpp")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)) install.packages(new.packages)
否则:
如果您将代码放在包中并使它们成为依赖项,那么当您安装包时,它们将自动安装。
使用lapply族和匿名函数方法,您可以:
尝试附加所有列出的包。 仅安装缺失(使用||惰性计算)。 尝试再次连接那些在第1步中丢失并在第2步中安装的组件。 打印每个包的最终加载状态(TRUE / FALSE)。 Req <- substitute(require(x, character。only = TRUE)) LBS <- c("plyr", "psych", "tm") Sapply (lbs, function(x) eval(req) || {install.packages(x);eval(点播)}) 心理学 真真真真
使用packrat使共享库完全相同,而不会改变其他环境。
就优雅和最佳实践而言,我认为你从根本上走错了方向。打包程序就是为这些问题而设计的。它是由RStudio由Hadley Wickham开发的。packrat使用自己的目录,将您的程序的所有依赖项安装在其中,而不涉及别人的环境,这样他们就不必安装依赖项并可能弄乱别人的环境系统。
Packrat is a dependency management system for R. R package dependencies can be frustrating. Have you ever had to use trial-and-error to figure out what R packages you need to install to make someone else’s code work–and then been left with those packages globally installed forever, because now you’re not sure whether you need them? Have you ever updated a package to get code in one of your projects to work, only to find that the updated package makes code in another project stop working? We built packrat to solve these problems. Use packrat to make your R projects more: Isolated: Installing a new or updated package for one project won’t break your other projects, and vice versa. That’s because packrat gives each project its own private package library. Portable: Easily transport your projects from one computer to another, even across different platforms. Packrat makes it easy to install the packages your project depends on. Reproducible: Packrat records the exact package versions you depend on, and ensures those exact versions are the ones that get installed wherever you go.
https://rstudio.github.io/packrat/