我最近偶然发现了2048游戏。通过在四个方向中的任何一个方向上移动类似的平铺,可以合并它们,以生成“更大”的平铺。每次移动后,一个新的平铺显示在随机的空位置,值为2或4。当所有的方块都被填满并且没有可以合并平铺的移动,或者你创建了一个值为2048的平铺时,游戏终止。

首先,我需要遵循一个明确的战略来实现目标。所以,我想为它写一个程序。

我当前的算法:

while (!game_over) {
    for each possible move:
        count_no_of_merges_for_2-tiles and 4-tiles
    choose the move with a large number of merges
}

我所做的是,在任何时候,我都会尝试将值为2和4的平铺合并,也就是说,我尝试尽可能少地使用2和4个平铺。如果我这样做,所有其他平铺都会自动合并,策略似乎很好。

但是,当我实际使用这个算法时,在游戏结束之前,我只得到了大约4000分。AFAIK的最高分数略高于20000分,这比我目前的分数要大得多。有比上述更好的算法吗?


当前回答

我用Haskell编写了一个2048解算器,主要是因为我现在正在学习这种语言。

我的游戏实现与实际游戏略有不同,因为新的平铺始终是“2”(而不是90%2和10%4)。而且,新的平铺不是随机的,而是始终是左上角第一个可用的平铺。该变体也称为Det 2048。

因此,此解算器是确定性的。

我使用了一种支持空瓷砖的穷举算法。它在深度1-4时表现得很快,但在深度5时,每次移动大约1秒就会变得很慢。

下面是实现求解算法的代码。网格表示为16长度的整数数组。得分是通过计算空方块的数量来完成的。

bestMove :: Int -> [Int] -> Int
bestMove depth grid = maxTuple [ (gridValue depth (takeTurn x grid), x) | x <- [0..3], takeTurn x grid /= [] ]

gridValue :: Int -> [Int] -> Int
gridValue _ [] = -1
gridValue 0 grid = length $ filter (==0) grid  -- <= SCORING
gridValue depth grid = maxInList [ gridValue (depth-1) (takeTurn x grid) | x <- [0..3] ]

我认为它很简单,很成功。当从空网格开始并在深度5处求解时,其结果为:

Move 4006
[2,64,16,4]
[16,4096,128,512]
[2048,64,1024,16]
[2,4,16,2]

Game Over

源代码可在此处找到:https://github.com/popovitsj/2048-haskell

其他回答

我在这里复制我博客上的一篇文章的内容


我提出的解决方案非常简单,易于实施。虽然,它已经达到131040分。给出了算法性能的几个基准。

算法

启发式评分算法

我的算法所基于的假设相当简单:如果你想获得更高的分数,那么棋盘必须尽可能保持整洁。特别地,最优设置由瓦片值的线性和单调递减顺序给出。这种直觉也会给你一个平铺值的上限:其中n是板上平铺的数量。

(如果需要时随机生成4个图块而不是2个图块,则有可能达到131072图块)

两种可能的董事会组织方式如下图所示:

为了以单调递减的顺序执行瓷砖的排序,得分si计算为板上线性化值的和乘以公共比率r<1的几何序列的值。

可以同时评估多个线性路径,最终得分将是任何路径的最大得分。

决策规则

实现的决策规则不太聪明,Python代码如下:

@staticmethod
def nextMove(board,recursion_depth=3):
    m,s = AI.nextMoveRecur(board,recursion_depth,recursion_depth)
    return m

@staticmethod
def nextMoveRecur(board,depth,maxDepth,base=0.9):
    bestScore = -1.
    bestMove = 0
    for m in range(1,5):
        if(board.validMove(m)):
            newBoard = copy.deepcopy(board)
            newBoard.move(m,add_tile=True)

            score = AI.evaluate(newBoard)
            if depth != 0:
                my_m,my_s = AI.nextMoveRecur(newBoard,depth-1,maxDepth)
                score += my_s*pow(base,maxDepth-depth+1)

            if(score > bestScore):
                bestMove = m
                bestScore = score
    return (bestMove,bestScore);

minmax或Expectimimax的实现肯定会改进算法。显然更多复杂的决策规则会降低算法的速度,并且需要一些时间来实现。我将在不久的将来尝试一个最小值实现。(敬请关注)

基准

T1-121测试-8个不同路径-r=0.125T2-122测试-8个不同路径-r=0.25T3-132测试-8个不同路径-r=0.5T4-211测试-2条不同路径-r=0.125T5-274测试-2条不同路径-r=0.25T6-211测试-2条不同路径-r=0.5

在T2的情况下,十次测试中有四次生成平均分数为42000的4096分图块

Code

该代码可以在GiHub上的以下链接找到:https://github.com/Nicola17/term2048-AI它基于term2048,用Python编写。我将尽快用C++实现一个更高效的版本。

编辑:这是一个天真的算法,模拟人类有意识的思维过程,与搜索所有可能性的人工智能相比,它的结果非常微弱,因为它只向前看一块砖。它是在答复时间表的早期提交的。

我改进了算法,打败了游戏!它可能会因为临近结束时的简单厄运而失败(你被迫向下移动,这是你永远不应该做的,并且在你最高的位置会出现一个瓦片。只需保持最上面的一行填满,这样向左移动不会打破模式),但基本上你最终有一个固定的部分和一个移动的部分可以玩。这是您的目标:

这是我默认选择的模型。

1024 512 256 128
  8   16  32  64
  4   2   x   x
  x   x   x   x

所选的角是任意的,你基本上不会按一个键(禁止的移动),如果按了,你会再次按相反的键并尝试修复它。对于未来的平铺,模型总是希望下一个随机平铺为2,并出现在当前模型的相反侧(当第一行不完整时,在右下角,第一行完成后,在左下角)。

算法来了。大约80%的人获胜(似乎总是可以用更“专业”的人工智能技术获胜,但我对此并不确定。)

initiateModel();

while(!game_over)
{    
    checkCornerChosen(); // Unimplemented, but it might be an improvement to change the reference point

    for each 3 possible move:
        evaluateResult()
    execute move with best score
    if no move is available, execute forbidden move and undo, recalculateModel()
 }

 evaluateResult() {
     calculatesBestCurrentModel()
     calculates distance to chosen model
     stores result
 }

 calculateBestCurrentModel() {
      (according to the current highest tile acheived and their distribution)
  }

关于缺失步骤的几点提示。在这里:

由于运气更接近预期模型,模型发生了变化。人工智能试图实现的模型是

 512 256 128  x
  X   X   x   x
  X   X   x   x
  x   x   x   x

实现这一目标的链条变成了:

 512 256  64  O
  8   16  32  O
  4   x   x   x
  x   x   x   x

O代表禁区。。。

因此,它将向右,然后再向右,然后(向右或向右,取决于4创建的位置),然后继续完成链,直到它得到:

因此,现在模型和链又回到了:

 512 256 128  64
  4   8  16   32
  X   X   x   x
  x   x   x   x

第二个指针,它运气不好,它的主要位置已经被占据。它很可能会失败,但仍能实现:

这里的模型和链是:

  O 1024 512 256
  O   O   O  128
  8  16   32  64
  4   x   x   x

当它设法达到128时,它将再次获得一整行:

  O 1024 512 256
  x   x  128 128
  x   x   x   x
  x   x   x   x

许多其他答案使用人工智能,对可能的未来、启发式、学习等进行计算成本高昂的搜索。这些令人印象深刻,可能是正确的前进方向,但我想提出另一个想法。

模拟游戏中优秀玩家使用的策略。

例如:

13 14 15 16
12 11 10  9
 5  6  7  8
 4  3  2  1

按照上面显示的顺序读取正方形,直到下一个正方形值大于当前值。这就带来了试图将另一个具有相同值的平铺合并到此方形中的问题。

为了解决这个问题,他们有两种移动方式,没有留下或更糟,检查这两种可能性可能会立即发现更多问题,这形成了一个依赖关系列表,每个问题都需要先解决另一个问题。我认为我在决定下一步行动时,特别是在被卡住的时候,会有一条链条,或者在某些情况下,是内部的依赖树。


瓷砖需要与邻居合并,但太小:将另一个邻居与此邻居合并。

较大的平铺:增加较小的周围平铺的值。


整个方法可能比这更复杂,但并不复杂。这可能是一种机械的感觉,缺乏分数、体重、神经和对可能性的深入探索。可能性之树甚至需要足够大,完全需要分支。

我用Haskell编写了一个2048解算器,主要是因为我现在正在学习这种语言。

我的游戏实现与实际游戏略有不同,因为新的平铺始终是“2”(而不是90%2和10%4)。而且,新的平铺不是随机的,而是始终是左上角第一个可用的平铺。该变体也称为Det 2048。

因此,此解算器是确定性的。

我使用了一种支持空瓷砖的穷举算法。它在深度1-4时表现得很快,但在深度5时,每次移动大约1秒就会变得很慢。

下面是实现求解算法的代码。网格表示为16长度的整数数组。得分是通过计算空方块的数量来完成的。

bestMove :: Int -> [Int] -> Int
bestMove depth grid = maxTuple [ (gridValue depth (takeTurn x grid), x) | x <- [0..3], takeTurn x grid /= [] ]

gridValue :: Int -> [Int] -> Int
gridValue _ [] = -1
gridValue 0 grid = length $ filter (==0) grid  -- <= SCORING
gridValue depth grid = maxInList [ gridValue (depth-1) (takeTurn x grid) | x <- [0..3] ]

我认为它很简单,很成功。当从空网格开始并在深度5处求解时,其结果为:

Move 4006
[2,64,16,4]
[16,4096,128,512]
[2048,64,1024,16]
[2,4,16,2]

Game Over

源代码可在此处找到:https://github.com/popovitsj/2048-haskell

我想我找到了一个非常有效的算法,因为我经常得分超过10000分,我个人最好的成绩是16000分左右。我的解决方案并不是要把最大的数字放在角落里,而是要把它放在最前排。

请参见以下代码:

while( !game_over ) {
    move_direction=up;
    if( !move_is_possible(up) ) {
        if( move_is_possible(right) && move_is_possible(left) ){
            if( number_of_empty_cells_after_moves(left,up) > number_of_empty_cells_after_moves(right,up) ) 
                move_direction = left;
            else
                move_direction = right;
        } else if ( move_is_possible(left) ){
            move_direction = left;
        } else if ( move_is_possible(right) ){
            move_direction = right;
        } else {
            move_direction = down;
        }
    }
    do_move(move_direction);
}