我如何使Python字典成员访问通过点“。”?

例如,我想写mydict.val而不是mydict['val']。

我还想以这种方式访问嵌套字典。例如

mydict.mydict2.val 

会提到

mydict = { 'mydict2': { 'val': ... } }

当前回答

我不喜欢在(超过)10年前的火灾中添加另一个日志,但我也会检查dotwiz库,它是我最近发布的——实际上就在今年。

它是一个相对较小的库,在基准测试中,它在get(访问)和设置(创建)时间方面也表现得非常好,至少与其他备选方案相比是这样。

通过pip安装dotwiz

pip install dotwiz

它能做你想让它做的所有事情,并继承dict的子类,所以它的操作就像一个普通的字典:

from dotwiz import DotWiz

dw = DotWiz()
dw.hello = 'world'
dw.hello
dw.hello += '!'
# dw.hello and dw['hello'] now both return 'world!'
dw.val = 5
dw.val2 = 'Sam'

最重要的是,你可以将它转换为dict对象:

d = dw.to_dict()
dw = DotWiz(d) # automatic conversion in constructor

这意味着如果你想访问的东西已经是dict形式的,你可以把它变成一个dotwz来方便访问:

import json
json_dict = json.loads(text)
data = DotWiz(json_dict)
print data.location.city

最后,我正在做的一些令人兴奋的事情是一个现有的特性请求,这样它就会自动创建新的子DotWiz实例,这样你就可以做这样的事情:

dw = DotWiz()
dw['people.steve.age'] = 31

dw
# ✫(people=✫(steve=✫(age=31)))

与点图比较

我在下面添加了一个快速而粗略的性能比较。

首先,用pip安装两个库:

pip install dotwiz dotmap

为了进行基准测试,我编写了以下代码:

from timeit import timeit

from dotwiz import DotWiz
from dotmap import DotMap


d = {'hey': {'so': [{'this': {'is': {'pretty': {'cool': True}}}}]}}

dw = DotWiz(d)
# ✫(hey=✫(so=[✫(this=✫(is=✫(pretty={'cool'})))]))

dm = DotMap(d)
# DotMap(hey=DotMap(so=[DotMap(this=DotMap(is=DotMap(pretty={'cool'})))]))

assert dw.hey.so[0].this['is'].pretty.cool == dm.hey.so[0].this['is'].pretty.cool

n = 100_000

print('dotwiz (create):  ', round(timeit('DotWiz(d)', number=n, globals=globals()), 3))
print('dotmap (create):  ', round(timeit('DotMap(d)', number=n, globals=globals()), 3))
print('dotwiz (get):  ', round(timeit("dw.hey.so[0].this['is'].pretty.cool", number=n, globals=globals()), 3))
print('dotmap (get):  ', round(timeit("dm.hey.so[0].this['is'].pretty.cool", number=n, globals=globals()), 3))

结果,在我的M1 Mac上运行Python 3.10:

dotwiz (create):   0.189
dotmap (create):   1.085
dotwiz (get):   0.014
dotmap (get):   0.335

其他回答

使用SimpleNamespace:

>>> from types import SimpleNamespace   
>>> d = dict(x=[1, 2], y=['a', 'b'])
>>> ns = SimpleNamespace(**d)
>>> ns.x
[1, 2]
>>> ns
namespace(x=[1, 2], y=['a', 'b'])

我的观点:出于我自己的目的,我开发了minydra,一个简单的命令行解析器,包括一个自定义类MinyDict(灵感来自addict):


In [1]: from minydra import MinyDict

In [2]: args = MinyDict({"foo": "bar", "yes.no.maybe": "idontknow"}).pretty_print(); args
╭──────────────────────────────╮
│ foo          : bar           │
│ yes.no.maybe : idontknow     │
╰──────────────────────────────╯
Out[2]: {'foo': 'bar', 'yes.no.maybe': 'idontknow'}

In [3]: args.resolve().pretty_print(); args
╭──────────────────────────╮
│ foo : bar                │
│ yes                      │
│ │no                      │
│ │ │maybe : idontknow     │
╰──────────────────────────╯
Out[3]: {'foo': 'bar', 'yes': {'no': {'maybe': 'idontknow'}}}

In [4]: args.yes.no.maybe
Out[4]: "idontknow"

In [5]: "foo" in args
Out[5]: True

In [6]: "rick" in args
Out[6]: False

In [7]: args.morty is None
Out[7]: True

In [8]: args.items()
Out[8]: dict_items([('foo', 'bar'), ('yes', {'no': {'maybe': 'idontknow'}})])

它通过向json yaml和pickle添加转储/加载方法来上瘾,并且在MinyDict.update()中也有一个严格的模式来防止创建新键(这对于防止命令行中的错字很有用)

I ended up trying BOTH the AttrDict and the Bunch libraries and found them to be way to slow for my uses. After a friend and I looked into it, we found that the main method for writing these libraries results in the library aggressively recursing through a nested object and making copies of the dictionary object throughout. With this in mind, we made two key changes. 1) We made attributes lazy-loaded 2) instead of creating copies of a dictionary object, we create copies of a light-weight proxy object. This is the final implementation. The performance increase of using this code is incredible. When using AttrDict or Bunch, these two libraries alone consumed 1/2 and 1/3 respectively of my request time(what!?). This code reduced that time to almost nothing(somewhere in the range of 0.5ms). This of course depends on your needs, but if you are using this functionality quite a bit in your code, definitely go with something simple like this.

class DictProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    def __getattr__(self, key):
        try:
            return wrap(getattr(self.obj, key))
        except AttributeError:
            try:
                return self[key]
            except KeyError:
                raise AttributeError(key)

    # you probably also want to proxy important list properties along like
    # items(), iteritems() and __len__

class ListProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    # you probably also want to proxy important list properties along like
    # __iter__ and __len__

def wrap(value):
    if isinstance(value, dict):
        return DictProxy(value)
    if isinstance(value, (tuple, list)):
        return ListProxy(value)
    return value

参见https://stackoverflow.com/users/704327/michael-merickel的原始实现。

另一件需要注意的事情是,这个实现非常简单,并且没有实现您可能需要的所有方法。您需要根据需要在DictProxy或ListProxy对象上写入这些内容。

如果你想pickle你修改后的字典,你需要添加几个状态方法到上面的答案:

class DotDict(dict):
    """dot.notation access to dictionary attributes"""
    def __getattr__(self, attr):
        return self.get(attr)
    __setattr__= dict.__setitem__
    __delattr__= dict.__delitem__

    def __getstate__(self):
        return self

    def __setstate__(self, state):
        self.update(state)
        self.__dict__ = self

这也适用于嵌套字典,并确保后面追加的字典行为相同:

class DotDict(dict):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # Recursively turn nested dicts into DotDicts
        for key, value in self.items():
            if type(value) is dict:
                self[key] = DotDict(value)

    def __setitem__(self, key, item):
        if type(item) is dict:
            item = DotDict(item)
        super().__setitem__(key, item)

    __setattr__ = __setitem__
    __getattr__ = dict.__getitem__