我如何使Python字典成员访问通过点“。”?

例如,我想写mydict.val而不是mydict['val']。

我还想以这种方式访问嵌套字典。例如

mydict.mydict2.val 

会提到

mydict = { 'mydict2': { 'val': ... } }

当前回答

使用SimpleNamespace:

>>> from types import SimpleNamespace   
>>> d = dict(x=[1, 2], y=['a', 'b'])
>>> ns = SimpleNamespace(**d)
>>> ns.x
[1, 2]
>>> ns
namespace(x=[1, 2], y=['a', 'b'])

其他回答

def dict_to_object(dick):
    # http://stackoverflow.com/a/1305663/968442

    class Struct:
        def __init__(self, **entries):
            self.__dict__.update(entries)

    return Struct(**dick)

如果一个人决定永久地将字典转换为对象,这应该做到。您可以在访问之前创建一个丢弃对象。

d = dict_to_object(d)

你可以用我刚做的这个类来做。对于这个类,您可以像使用另一个字典(包括json序列化)一样使用Map对象,或者使用点表示法。希望对大家有所帮助:

class Map(dict):
    """
    Example:
    m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
    """
    def __init__(self, *args, **kwargs):
        super(Map, self).__init__(*args, **kwargs)
        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.iteritems():
                    self[k] = v

        if kwargs:
            for k, v in kwargs.iteritems():
                self[k] = v

    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(Map, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(Map, self).__delitem__(key)
        del self.__dict__[key]

使用例子:

m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
# Add new key
m.new_key = 'Hello world!'
# Or
m['new_key'] = 'Hello world!'
print m.new_key
print m['new_key']
# Update values
m.new_key = 'Yay!'
# Or
m['new_key'] = 'Yay!'
# Delete key
del m.new_key
# Or
del m['new_key']

如果你已经在使用pandas,你可以构造一个pandas Series或DataFrame,从中你可以通过点语法访问项目:

1级字典:

import pandas as pd

my_dictionary = pd.Series({
  'key1': 'value1',
  'key2': 'value2'
})

print(my_dictionary.key1)
# Output: value1

2级字典:

import pandas as pd

my_dictionary = pd.DataFrame({
  'key1': {
    'inner_key1': 'value1'
  },
  'key2': {
    'inner_key2': 'value2'
  }
})

print(my_dictionary.key1.inner_key1)
# Output: value1

请注意,这可能在规范化数据结构(其中每个字典条目都具有相同的结构)下工作得更好。在上面的第二个例子中,得到的DataFrame是:

              key1    key2
inner_key1  value1     NaN
inner_key2     NaN  value2

kaggle_environments使用的实现是一个名为structify的函数。

class Struct(dict):
    def __init__(self, **entries):
        entries = {k: v for k, v in entries.items() if k != "items"}
        dict.__init__(self, entries)
        self.__dict__.update(entries)

    def __setattr__(self, attr, value):
        self.__dict__[attr] = value
        self[attr] = value

# Added benefit of cloning lists and dicts.
def structify(o):
    if isinstance(o, list):
        return [structify(o[i]) for i in range(len(o))]
    elif isinstance(o, dict):
        return Struct(**{k: structify(v) for k, v in o.items()})
    return o

https://github.com/Kaggle/kaggle-environments/blob/master/kaggle_environments/utils.py

这可能有助于在《ConnectX》等游戏中测试AI模拟代理

from kaggle_environments import structify

obs  = structify({ 'remainingOverageTime': 60, 'step': 0, 'mark': 1, 'board': [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]})
conf = structify({ 'timeout': 2, 'actTimeout': 2, 'agentTimeout': 60, 'episodeSteps': 1000, 'runTimeout': 1200, 'columns': 7, 'rows': 6, 'inarow': 4, '__raw_path__': '/kaggle_simulations/agent/main.py' })

def agent(obs, conf):
  action = obs.step % conf.columns
  return action

这也适用于嵌套字典,并确保后面追加的字典行为相同:

class DotDict(dict):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # Recursively turn nested dicts into DotDicts
        for key, value in self.items():
            if type(value) is dict:
                self[key] = DotDict(value)

    def __setitem__(self, key, item):
        if type(item) is dict:
            item = DotDict(item)
        super().__setitem__(key, item)

    __setattr__ = __setitem__
    __getattr__ = dict.__getitem__