我如何使Python字典成员访问通过点“。”?

例如,我想写mydict.val而不是mydict['val']。

我还想以这种方式访问嵌套字典。例如

mydict.mydict2.val 

会提到

mydict = { 'mydict2': { 'val': ... } }

当前回答

这是我从很久以前的一个项目里挖出来的。它可能还可以再优化一点,但就是这样了。

class DotNotation(dict):
    
    __setattr__= dict.__setitem__
    __delattr__= dict.__delitem__

    def __init__(self, data):
        if isinstance(data, str):
            data = json.loads(data)
    
        for name, value in data.items():
            setattr(self, name, self._wrap(value))

    def __getattr__(self, attr):
        def _traverse(obj, attr):
            if self._is_indexable(obj):
                try:
                    return obj[int(attr)]
                except:
                    return None
            elif isinstance(obj, dict):
                return obj.get(attr, None)
            else:
                return attr
        if '.' in attr:
            return reduce(_traverse, attr.split('.'), self)
        return self.get(attr, None)

    def _wrap(self, value):
        if self._is_indexable(value):
            # (!) recursive (!)
            return type(value)([self._wrap(v) for v in value])
        elif isinstance(value, dict):
            return DotNotation(value)
        else:
            return value
    
    @staticmethod
    def _is_indexable(obj):
        return isinstance(obj, (tuple, list, set, frozenset))


if __name__ == "__main__":
    test_dict = {
        "dimensions": {
            "length": "112",
            "width": "103",
            "height": "42"
        },
        "meta_data": [
            {
                "id": 11089769,
                "key": "imported_gallery_files",
                "value": [
                    "https://example.com/wp-content/uploads/2019/09/unnamed-3.jpg",
                    "https://example.com/wp-content/uploads/2019/09/unnamed-2.jpg",
                    "https://example.com/wp-content/uploads/2019/09/unnamed-4.jpg"
                ]
            }
        ]
    }
    dotted_dict = DotNotation(test_dict)
    print(dotted_dict.dimensions.length) # => '112'
    print(getattr(dotted_dict, 'dimensions.length')) # => '112'
    print(dotted_dict.meta_data[0].key) # => 'imported_gallery_files'
    print(getattr(dotted_dict, 'meta_data.0.key')) # => 'imported_gallery_files'
    print(dotted_dict.meta_data[0].value) # => ['link1','link2','link2']
    print(getattr(dotted_dict, 'meta_data.0.value')) # => ['link1','link2','link3']
    print(dotted_dict.meta_data[0].value[2]) # => 'link3'
    print(getattr(dotted_dict, 'meta_data.0.value.2')) # => 'link3'

其他回答

我喜欢Munch,它提供了很多方便的选项在点访问。

进口蒙克 Temp_1 = {'person': {' fname': 'senthil', 'lname': 'ramalingam'}} Dict_munch = munch.munchify(temp_1) dict_munch.person.fname

不喜欢。在Python中,属性访问和索引是分开的事情,您不应该希望它们执行相同的操作。创建一个类(可能是由namedtuple创建的),如果你有一些应该具有可访问属性的东西,并使用[]符号从字典中获取一个项。

此解决方案是对epool提供的解决方案的改进,以满足OP以一致的方式访问嵌套字典的需求。epool的解决方案不允许访问嵌套字典。

class YAMLobj(dict):
    def __init__(self, args):
        super(YAMLobj, self).__init__(args)
        if isinstance(args, dict):
            for k, v in args.iteritems():
                if not isinstance(v, dict):
                    self[k] = v
                else:
                    self.__setattr__(k, YAMLobj(v))


    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(YAMLobj, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(YAMLobj, self).__delitem__(key)
        del self.__dict__[key]

使用这个类,现在可以执行如下操作:A.B.C.D.

使用namedtuple允许点访问。

它就像一个轻量级对象,也具有元组的属性。

它允许定义属性并使用点操作符访问它们。

from collections import namedtuple
Data = namedtuple('Data', ['key1', 'key2'])

dataObj = Data(val1, key2=val2) # can instantiate using keyword arguments and positional arguments

使用点运算符访问

dataObj.key1 # Gives val1
datObj.key2 # Gives val2

使用元组索引进行访问

dataObj[0] # Gives val1
dataObj[1] # Gives val2

但记住这是一个元组;不是字典。因此下面的代码将给出错误

dataObj['key1'] # Gives TypeError: tuple indices must be integers or slices, not str

参考:namedtuple

I ended up trying BOTH the AttrDict and the Bunch libraries and found them to be way to slow for my uses. After a friend and I looked into it, we found that the main method for writing these libraries results in the library aggressively recursing through a nested object and making copies of the dictionary object throughout. With this in mind, we made two key changes. 1) We made attributes lazy-loaded 2) instead of creating copies of a dictionary object, we create copies of a light-weight proxy object. This is the final implementation. The performance increase of using this code is incredible. When using AttrDict or Bunch, these two libraries alone consumed 1/2 and 1/3 respectively of my request time(what!?). This code reduced that time to almost nothing(somewhere in the range of 0.5ms). This of course depends on your needs, but if you are using this functionality quite a bit in your code, definitely go with something simple like this.

class DictProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    def __getattr__(self, key):
        try:
            return wrap(getattr(self.obj, key))
        except AttributeError:
            try:
                return self[key]
            except KeyError:
                raise AttributeError(key)

    # you probably also want to proxy important list properties along like
    # items(), iteritems() and __len__

class ListProxy(object):
    def __init__(self, obj):
        self.obj = obj

    def __getitem__(self, key):
        return wrap(self.obj[key])

    # you probably also want to proxy important list properties along like
    # __iter__ and __len__

def wrap(value):
    if isinstance(value, dict):
        return DictProxy(value)
    if isinstance(value, (tuple, list)):
        return ListProxy(value)
    return value

参见https://stackoverflow.com/users/704327/michael-merickel的原始实现。

另一件需要注意的事情是,这个实现非常简单,并且没有实现您可能需要的所有方法。您需要根据需要在DictProxy或ListProxy对象上写入这些内容。