我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
当前回答
语言本身不支持这一点,但有时这仍然是一个有用的需求。除了Bunch recipe,你还可以写一个小方法,可以使用虚线字符串访问字典:
def get_var(input_dict, accessor_string):
"""Gets data from a dictionary using a dotted accessor-string"""
current_data = input_dict
for chunk in accessor_string.split('.'):
current_data = current_data.get(chunk, {})
return current_data
这将支持如下内容:
>> test_dict = {'thing': {'spam': 12, 'foo': {'cheeze': 'bar'}}}
>> output = get_var(test_dict, 'thing.spam.foo.cheeze')
>> print output
'bar'
>>
其他回答
我最近遇到了“Box”库,它也做同样的事情。
安装命令:pip install python-box
例子:
from box import Box
mydict = {"key1":{"v1":0.375,
"v2":0.625},
"key2":0.125,
}
mydict = Box(mydict)
print(mydict.key1.v1)
我发现它比其他现有的库(如dotmap)更有效,当你有大量嵌套字典时,dotmap会产生python递归错误。
链接到图书馆和详细信息:https://pypi.org/project/python-box/
派生自dict和并实现__getattr__和__setattr__。
或者你也可以用Bunch,非常相似。
我不认为这是可能的monkeypatch内置字典类。
@derek73的答案非常简洁,但它不能被pickle或(深度)复制,并且它在缺少键时返回None。下面的代码修复了这个问题。
编辑:我没有看到上面的答案解决了完全相同的问题(点赞)。我把答案留在这里供参考。
class dotdict(dict):
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def __getattr__(self, name):
try:
return self[name]
except KeyError:
raise AttributeError(name)
这是我从很久以前的一个项目里挖出来的。它可能还可以再优化一点,但就是这样了。
class DotNotation(dict):
__setattr__= dict.__setitem__
__delattr__= dict.__delitem__
def __init__(self, data):
if isinstance(data, str):
data = json.loads(data)
for name, value in data.items():
setattr(self, name, self._wrap(value))
def __getattr__(self, attr):
def _traverse(obj, attr):
if self._is_indexable(obj):
try:
return obj[int(attr)]
except:
return None
elif isinstance(obj, dict):
return obj.get(attr, None)
else:
return attr
if '.' in attr:
return reduce(_traverse, attr.split('.'), self)
return self.get(attr, None)
def _wrap(self, value):
if self._is_indexable(value):
# (!) recursive (!)
return type(value)([self._wrap(v) for v in value])
elif isinstance(value, dict):
return DotNotation(value)
else:
return value
@staticmethod
def _is_indexable(obj):
return isinstance(obj, (tuple, list, set, frozenset))
if __name__ == "__main__":
test_dict = {
"dimensions": {
"length": "112",
"width": "103",
"height": "42"
},
"meta_data": [
{
"id": 11089769,
"key": "imported_gallery_files",
"value": [
"https://example.com/wp-content/uploads/2019/09/unnamed-3.jpg",
"https://example.com/wp-content/uploads/2019/09/unnamed-2.jpg",
"https://example.com/wp-content/uploads/2019/09/unnamed-4.jpg"
]
}
]
}
dotted_dict = DotNotation(test_dict)
print(dotted_dict.dimensions.length) # => '112'
print(getattr(dotted_dict, 'dimensions.length')) # => '112'
print(dotted_dict.meta_data[0].key) # => 'imported_gallery_files'
print(getattr(dotted_dict, 'meta_data.0.key')) # => 'imported_gallery_files'
print(dotted_dict.meta_data[0].value) # => ['link1','link2','link2']
print(getattr(dotted_dict, 'meta_data.0.value')) # => ['link1','link2','link3']
print(dotted_dict.meta_data[0].value[2]) # => 'link3'
print(getattr(dotted_dict, 'meta_data.0.value.2')) # => 'link3'
kaggle_environments使用的实现是一个名为structify的函数。
class Struct(dict):
def __init__(self, **entries):
entries = {k: v for k, v in entries.items() if k != "items"}
dict.__init__(self, entries)
self.__dict__.update(entries)
def __setattr__(self, attr, value):
self.__dict__[attr] = value
self[attr] = value
# Added benefit of cloning lists and dicts.
def structify(o):
if isinstance(o, list):
return [structify(o[i]) for i in range(len(o))]
elif isinstance(o, dict):
return Struct(**{k: structify(v) for k, v in o.items()})
return o
https://github.com/Kaggle/kaggle-environments/blob/master/kaggle_environments/utils.py
这可能有助于在《ConnectX》等游戏中测试AI模拟代理
from kaggle_environments import structify
obs = structify({ 'remainingOverageTime': 60, 'step': 0, 'mark': 1, 'board': [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]})
conf = structify({ 'timeout': 2, 'actTimeout': 2, 'agentTimeout': 60, 'episodeSteps': 1000, 'runTimeout': 1200, 'columns': 7, 'rows': 6, 'inarow': 4, '__raw_path__': '/kaggle_simulations/agent/main.py' })
def agent(obs, conf):
action = obs.step % conf.columns
return action