我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

我可以举一个for循环的例子,也许一旦掌握了这个概念,在不同的上下文中理解起来会更简单。

这意味着在循环中,步长呈指数增长。例如。

for (i=1; i<=n; i=i*2) {;}

该程序的O表示法的复杂性为O(log(n))。让我们尝试手动循环(n介于512和1023之间(不包括1024):

step: 1   2   3   4   5    6    7    8     9     10
   i: 1   2   4   8   16   32   64   128   256   512

尽管n介于512和1023之间,但只进行了10次迭代。这是因为循环中的步骤呈指数增长,因此只需要10次迭代就可以到达终点。

x的对数(到a的底)是a^x的反函数。这就像说对数是指数的倒数。

现在试着这样看,如果指数增长非常快,那么对数增长(相反)非常慢。

O(n)和O(log(n))之间的差异是巨大的,类似于O(n(n)与O(a^n)之间的区别(a是常数)。

其他回答

首先,我建议您阅读以下书籍:;

算法(第4版)

下面是一些函数及其预期的复杂性。数字表示语句执行频率。

以下Big-O复杂性图表也取自bigocheatsheet

最后,非常简单的展示展示了它是如何计算的;

剖析程序的语句执行频率。

分析程序的运行时间(示例)。

简单地说:在算法的每一步,你都可以将工作减半。(渐近等价于第三、第四、…)

对数运行时间(O(log n))本质上意味着运行时间与输入大小的对数成比例增长-例如,如果10个项目最多需要一定的时间x,100个项目最多花费2倍,10000个项目最多耗费4倍,那么它看起来像是O(log n)时间复杂性。

我想补充一点,树的高度是从根到叶的最长路径的长度,节点的高度是该节点到叶的最大路径的长度。路径表示在两个节点之间遍历树时遇到的节点数。为了实现O(logn)时间复杂度,树应该是平衡的,这意味着任何节点的子节点之间的高度差应该小于或等于1。因此,树并不总是保证时间复杂度O(log n),除非它们是平衡的。实际上,在某些情况下,在最坏情况下,树中搜索的时间复杂度可能为O(n)。

你可以看看平衡树,比如AVL树。这项工作是在插入数据时平衡树,以便在树中搜索时保持(logn)的时间复杂度。

如果您有一个函数需要:

1 millisecond to complete if you have 2 elements.
2 milliseconds to complete if you have 4 elements.
3 milliseconds to complete if you have 8 elements.
4 milliseconds to complete if you have 16 elements.
...
n milliseconds to complete if you have 2^n elements.

然后需要log2(n)时间。广义地说,大O符号意味着关系只需要对大n成立,常数因子和小项可以忽略。