我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

实际上,如果您有一个n个元素的列表,并从该列表中创建一个二叉树(就像在除法和征服算法中一样),您将一直除以2,直到达到大小为1的列表(树叶)。

在第一步,你除以2。然后,您有2个列表(2^1),将每个列表除以2,因此您有4个列表(2*2),然后再进行一次除法,您有8个列表(3^3),依此类推,直到列表大小为1

这给出了一个等式:

n/(2^步)=1<=>n=2^步<=>lg(n)=步

(取每边的lg,lg为对数基数2)

其他回答

每次编写算法或代码时,我们都会尝试分析其渐近复杂性。它不同于它的时间复杂性。

渐近复杂度是算法执行时间的行为,而时间复杂度是实际执行时间。但有些人可以互换使用这些术语。

因为时间复杂度取决于各种参数。1.物理系统2.编程语言3.编码样式4.还有更多。。。。。。

实际执行时间不是一个很好的分析指标。

相反,我们将输入大小作为参数,因为无论代码是什么,输入都是相同的。因此,执行时间是输入大小的函数。

以下是线性时间算法的示例

线性搜索给定n个输入元素,要搜索数组中的元素,最多需要“n”个比较。换句话说,无论你使用什么编程语言,你喜欢什么编码风格,在什么系统上执行它。在最坏的情况下,它只需要n次比较。执行时间与输入大小成线性比例。

它不仅仅是搜索,无论是什么工作(增量、比较或任何操作),它都是输入大小的函数。

所以当你说任何算法都是O(logn)这意味着执行时间是输入大小n的log倍。

随着输入大小的增加,完成的工作(这里是执行时间)增加。(因此,比例)

      n      Work
      2     1 units of work
      4     2 units of work
      8     3 units of work

随着输入大小的增加,所做的工作也会增加,并且与任何机器无关。如果你试图找出工作单位的价值它实际上取决于上述参数。它会根据系统和所有参数而改变。

我可以举一个for循环的例子,也许一旦掌握了这个概念,在不同的上下文中理解起来会更简单。

这意味着在循环中,步长呈指数增长。例如。

for (i=1; i<=n; i=i*2) {;}

该程序的O表示法的复杂性为O(log(n))。让我们尝试手动循环(n介于512和1023之间(不包括1024):

step: 1   2   3   4   5    6    7    8     9     10
   i: 1   2   4   8   16   32   64   128   256   512

尽管n介于512和1023之间,但只进行了10次迭代。这是因为循环中的步骤呈指数增长,因此只需要10次迭代就可以到达终点。

x的对数(到a的底)是a^x的反函数。这就像说对数是指数的倒数。

现在试着这样看,如果指数增长非常快,那么对数增长(相反)非常慢。

O(n)和O(log(n))之间的差异是巨大的,类似于O(n(n)与O(a^n)之间的区别(a是常数)。

实际上,如果您有一个n个元素的列表,并从该列表中创建一个二叉树(就像在除法和征服算法中一样),您将一直除以2,直到达到大小为1的列表(树叶)。

在第一步,你除以2。然后,您有2个列表(2^1),将每个列表除以2,因此您有4个列表(2*2),然后再进行一次除法,您有8个列表(3^3),依此类推,直到列表大小为1

这给出了一个等式:

n/(2^步)=1<=>n=2^步<=>lg(n)=步

(取每边的lg,lg为对数基数2)

对数运行时间(O(log n))本质上意味着运行时间与输入大小的对数成比例增长-例如,如果10个项目最多需要一定的时间x,100个项目最多花费2倍,10000个项目最多耗费4倍,那么它看起来像是O(log n)时间复杂性。

在信息技术中,它意味着:

  f(n)=O(g(n)) If there is suitable constant C and N0 independent on N, 
  such that
  for all N>N0  "C*g(n) > f(n) > 0" is true.

看来这个符号主要是从数学中提取出来的。

本文引用了一句话:D.E.Knuth,《大OMICRON、大OMEGA和大THETA》,1976年:

基于这里讨论的问题,我建议SIGACT以及计算机科学和数学期刊的编辑,采用上面定义的符号,除非有更好的替代方案很快就会发现。

今天是2016年,但我们今天仍然使用它。


在数学分析中,这意味着:

  lim (f(n)/g(n))=Constant; where n goes to +infinity

但即使在数学分析中,有时这个符号也用于表示“C*g(n)>f(n)>0”。

我从大学里就知道,这个符号是由德国数学家朗道(1877-1938)创造的