给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
当前回答
下面是我根据上面的答案和我自己的用例写的一个示例函数:
def label_vector_to_one_hot_vector(vector, one_hot_size=10):
"""
Use to convert a column vector to a 'one-hot' matrix
Example:
vector: [[2], [0], [1]]
one_hot_size: 3
returns:
[[ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.]]
Parameters:
vector (np.array): of size (n, 1) to be converted
one_hot_size (int) optional: size of 'one-hot' row vector
Returns:
np.array size (vector.size, one_hot_size): converted to a 'one-hot' matrix
"""
squeezed_vector = np.squeeze(vector, axis=-1)
one_hot = np.zeros((squeezed_vector.size, one_hot_size))
one_hot[np.arange(squeezed_vector.size), squeezed_vector] = 1
return one_hot
label_vector_to_one_hot_vector(vector=[[2], [0], [1]], one_hot_size=3)
其他回答
下面是一个将一维向量转换为二维单热数组的函数。
#!/usr/bin/env python
import numpy as np
def convertToOneHot(vector, num_classes=None):
"""
Converts an input 1-D vector of integers into an output
2-D array of one-hot vectors, where an i'th input value
of j will set a '1' in the i'th row, j'th column of the
output array.
Example:
v = np.array((1, 0, 4))
one_hot_v = convertToOneHot(v)
print one_hot_v
[[0 1 0 0 0]
[1 0 0 0 0]
[0 0 0 0 1]]
"""
assert isinstance(vector, np.ndarray)
assert len(vector) > 0
if num_classes is None:
num_classes = np.max(vector)+1
else:
assert num_classes > 0
assert num_classes >= np.max(vector)
result = np.zeros(shape=(len(vector), num_classes))
result[np.arange(len(vector)), vector] = 1
return result.astype(int)
下面是一些用法示例:
>>> a = np.array([1, 0, 3])
>>> convertToOneHot(a)
array([[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1]])
>>> convertToOneHot(a, num_classes=10)
array([[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]])
P是一个2d ndarray。 我们想知道哪一个值在一行中是最大的,在这里是1,其他地方是0。
干净简单的解决方案:
max_elements_i = np.expand_dims(np.argmax(p, axis=1), axis=1)
one_hot = np.zeros(p.shape)
np.put_along_axis(one_hot, max_elements_i, 1, axis=1)
使用Neuraxle管道步骤:
树立榜样
import numpy as np
a = np.array([1,0,3])
b = np.array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
进行实际的转换
from neuraxle.steps.numpy import OneHotEncoder
encoder = OneHotEncoder(nb_columns=4)
b_pred = encoder.transform(a)
断言它有效
assert b_pred == b
文档链接:neuraxle.steps.numpy.OneHotEncoder
下面是我根据上面的答案和我自己的用例写的一个示例函数:
def label_vector_to_one_hot_vector(vector, one_hot_size=10):
"""
Use to convert a column vector to a 'one-hot' matrix
Example:
vector: [[2], [0], [1]]
one_hot_size: 3
returns:
[[ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.]]
Parameters:
vector (np.array): of size (n, 1) to be converted
one_hot_size (int) optional: size of 'one-hot' row vector
Returns:
np.array size (vector.size, one_hot_size): converted to a 'one-hot' matrix
"""
squeezed_vector = np.squeeze(vector, axis=-1)
one_hot = np.zeros((squeezed_vector.size, one_hot_size))
one_hot[np.arange(squeezed_vector.size), squeezed_vector] = 1
return one_hot
label_vector_to_one_hot_vector(vector=[[2], [0], [1]], one_hot_size=3)
你可以使用下面的代码转换成一个热向量:
设x是普通的类向量,它只有一个列,从0到某个数:
import numpy as np
np.eye(x.max()+1)[x]
如果0不是一个类;然后移除+1。