给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
当前回答
下面是我根据上面的答案和我自己的用例写的一个示例函数:
def label_vector_to_one_hot_vector(vector, one_hot_size=10):
"""
Use to convert a column vector to a 'one-hot' matrix
Example:
vector: [[2], [0], [1]]
one_hot_size: 3
returns:
[[ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.]]
Parameters:
vector (np.array): of size (n, 1) to be converted
one_hot_size (int) optional: size of 'one-hot' row vector
Returns:
np.array size (vector.size, one_hot_size): converted to a 'one-hot' matrix
"""
squeezed_vector = np.squeeze(vector, axis=-1)
one_hot = np.zeros((squeezed_vector.size, one_hot_size))
one_hot[np.arange(squeezed_vector.size), squeezed_vector] = 1
return one_hot
label_vector_to_one_hot_vector(vector=[[2], [0], [1]], one_hot_size=3)
其他回答
P是一个2d ndarray。 我们想知道哪一个值在一行中是最大的,在这里是1,其他地方是0。
干净简单的解决方案:
max_elements_i = np.expand_dims(np.argmax(p, axis=1), axis=1)
one_hot = np.zeros(p.shape)
np.put_along_axis(one_hot, max_elements_i, 1, axis=1)
创建一个有足够列的零数组b,即a.max() + 1。 然后,对于每一行i,设置第a[i]列为1。
>>> a = np.array([1, 0, 3])
>>> b = np.zeros((a.size, a.max() + 1))
>>> b[np.arange(a.size), a] = 1
>>> b
array([[ 0., 1., 0., 0.],
[ 1., 0., 0., 0.],
[ 0., 0., 0., 1.]])
>>> values = [1, 0, 3]
>>> n_values = np.max(values) + 1
>>> np.eye(n_values)[values]
array([[ 0., 1., 0., 0.],
[ 1., 0., 0., 0.],
[ 0., 0., 0., 1.]])
你可以使用下面的代码转换成一个热向量:
设x是普通的类向量,它只有一个列,从0到某个数:
import numpy as np
np.eye(x.max()+1)[x]
如果0不是一个类;然后移除+1。
以下是我认为有用的方法:
def one_hot(a, num_classes):
return np.squeeze(np.eye(num_classes)[a.reshape(-1)])
这里num_classes表示您拥有的类的数量。如果你有一个形状为(10000,)的向量,这个函数将它转换为(10000,C)注意,a是零索引,即one_hot(np。数组([0,1]),2)将给出[[1,0],[0,1]]。
我相信这正是你想要的。
PS:源代码是Sequence models - deeplearning.ai