给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
当前回答
你也可以使用numpy的eye函数:
numpy。眼(类数)[包含标签的向量]
其他回答
对于1-hot-encoding
one_hot_encode=pandas.get_dummies(array)
例如
享受编码
这是一个与维度无关的独立解决方案。
这将把任何非负整数的N维数组arr转换为一个N+1维数组one_hot,其中one_hot[i_1,…,i_N,c] = 1表示arr[i_1,…,i_N] = c.可以通过np恢复输入。argmax (one_hot, 1)
def expand_integer_grid(arr, n_classes):
"""
:param arr: N dim array of size i_1, ..., i_N
:param n_classes: C
:returns: one-hot N+1 dim array of size i_1, ..., i_N, C
:rtype: ndarray
"""
one_hot = np.zeros(arr.shape + (n_classes,))
axes_ranges = [range(arr.shape[i]) for i in range(arr.ndim)]
flat_grids = [_.ravel() for _ in np.meshgrid(*axes_ranges, indexing='ij')]
one_hot[flat_grids + [arr.ravel()]] = 1
assert((one_hot.sum(-1) == 1).all())
assert(np.allclose(np.argmax(one_hot, -1), arr))
return one_hot
我发现最简单的解决方案结合np。拿着和眼睛
def one_hot(x, depth: int):
return np.take(np.eye(depth), x, axis=0)
对任何形状的x都成立。
你可以使用sklearn.预处理。labelbinarizer:
例子:
import sklearn.preprocessing
a = [1,0,3]
label_binarizer = sklearn.preprocessing.LabelBinarizer()
label_binarizer.fit(range(max(a)+1))
b = label_binarizer.transform(a)
print('{0}'.format(b))
输出:
[[0 1 0 0]
[1 0 0 0]
[0 0 0 1]]
除此之外,你可以初始化sklearn.pre - processing. labelbinarizer(),这样transform的输出是稀疏的。
以下是我认为有用的方法:
def one_hot(a, num_classes):
return np.squeeze(np.eye(num_classes)[a.reshape(-1)])
这里num_classes表示您拥有的类的数量。如果你有一个形状为(10000,)的向量,这个函数将它转换为(10000,C)注意,a是零索引,即one_hot(np。数组([0,1]),2)将给出[[1,0],[0,1]]。
我相信这正是你想要的。
PS:源代码是Sequence models - deeplearning.ai