给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
当前回答
你也可以使用numpy的eye函数:
numpy。眼(类数)[包含标签的向量]
其他回答
我最近遇到了一个类似的问题,发现只有当你的数字符合特定的形式时,答案才令人满意。例如,如果你想单热编码以下列表:
all_good_list = [0,1,2,3,4]
继续吧,上面已经提到了发布的解决方案。但如果考虑到这些数据:
problematic_list = [0,23,12,89,10]
如果使用上面提到的方法,最后可能会得到90个单一热列。这是因为所有答案都包含n = np.max(a)+1。我找到了一个更通用的解决方案,想和你们分享:
import numpy as np
import sklearn
sklb = sklearn.preprocessing.LabelBinarizer()
a = np.asarray([1,2,44,3,2])
n = np.unique(a)
sklb.fit(n)
b = sklb.transform(a)
我希望有人遇到上述解决方案的相同限制,这可能会派上用场
def one_hot(n, class_num, col_wise=True):
a = np.eye(class_num)[n.reshape(-1)]
return a.T if col_wise else a
# Column for different hot
print(one_hot(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 8, 7]), 10))
# Row for different hot
print(one_hot(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 8, 7]), 10, col_wise=False))
你可以使用sklearn.预处理。labelbinarizer:
例子:
import sklearn.preprocessing
a = [1,0,3]
label_binarizer = sklearn.preprocessing.LabelBinarizer()
label_binarizer.fit(range(max(a)+1))
b = label_binarizer.transform(a)
print('{0}'.format(b))
输出:
[[0 1 0 0]
[1 0 0 0]
[0 0 0 1]]
除此之外,你可以初始化sklearn.pre - processing. labelbinarizer(),这样transform的输出是稀疏的。
如果你正在使用keras,有一个内置的实用程序:
from keras.utils.np_utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=3)
它与@YXD的答案几乎相同(请参阅源代码)。
我发现最简单的解决方案结合np。拿着和眼睛
def one_hot(x, depth: int):
return np.take(np.eye(depth), x, axis=0)
对任何形状的x都成立。