给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
当前回答
我最近遇到了一个类似的问题,发现只有当你的数字符合特定的形式时,答案才令人满意。例如,如果你想单热编码以下列表:
all_good_list = [0,1,2,3,4]
继续吧,上面已经提到了发布的解决方案。但如果考虑到这些数据:
problematic_list = [0,23,12,89,10]
如果使用上面提到的方法,最后可能会得到90个单一热列。这是因为所有答案都包含n = np.max(a)+1。我找到了一个更通用的解决方案,想和你们分享:
import numpy as np
import sklearn
sklb = sklearn.preprocessing.LabelBinarizer()
a = np.asarray([1,2,44,3,2])
n = np.unique(a)
sklb.fit(n)
b = sklb.transform(a)
我希望有人遇到上述解决方案的相同限制,这可能会派上用场
其他回答
为了详细说明K3—rnc的优秀答案,这里有一个更通用的版本:
def onehottify(x, n=None, dtype=float):
"""1-hot encode x with the max value n (computed from data if n is None)."""
x = np.asarray(x)
n = np.max(x) + 1 if n is None else n
return np.eye(n, dtype=dtype)[x]
此外,这里是这个方法的快速和粗略的基准测试,以及YXD目前接受的答案(略有更改,以便他们提供相同的API,除了后者只适用于1D ndarray):
def onehottify_only_1d(x, n=None, dtype=float):
x = np.asarray(x)
n = np.max(x) + 1 if n is None else n
b = np.zeros((len(x), n), dtype=dtype)
b[np.arange(len(x)), x] = 1
return b
后一种方法快35% (MacBook Pro 13 2015),但前一种更通用:
>>> import numpy as np
>>> np.random.seed(42)
>>> a = np.random.randint(0, 9, size=(10_000,))
>>> a
array([6, 3, 7, ..., 5, 8, 6])
>>> %timeit onehottify(a, 10)
188 µs ± 5.03 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
>>> %timeit onehottify_only_1d(a, 10)
139 µs ± 2.78 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
下面是我根据上面的答案和我自己的用例写的一个示例函数:
def label_vector_to_one_hot_vector(vector, one_hot_size=10):
"""
Use to convert a column vector to a 'one-hot' matrix
Example:
vector: [[2], [0], [1]]
one_hot_size: 3
returns:
[[ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.]]
Parameters:
vector (np.array): of size (n, 1) to be converted
one_hot_size (int) optional: size of 'one-hot' row vector
Returns:
np.array size (vector.size, one_hot_size): converted to a 'one-hot' matrix
"""
squeezed_vector = np.squeeze(vector, axis=-1)
one_hot = np.zeros((squeezed_vector.size, one_hot_size))
one_hot[np.arange(squeezed_vector.size), squeezed_vector] = 1
return one_hot
label_vector_to_one_hot_vector(vector=[[2], [0], [1]], one_hot_size=3)
我添加了一个简单的补全函数,只使用numpy操作符:
def probs_to_onehot(output_probabilities):
argmax_indices_array = np.argmax(output_probabilities, axis=1)
onehot_output_array = np.eye(np.unique(argmax_indices_array).shape[0])[argmax_indices_array.reshape(-1)]
return onehot_output_array
它以一个概率矩阵作为输入:例如:
[[0.03038822 0.65810204 0.16549407 0.3797123] . [0.02771272 0.2760752 0.3280924 0.33458805]
它会返回
[[0 0 0 0]... [0 0 0 1]
你也可以使用numpy的eye函数:
numpy。眼(类数)[包含标签的向量]
使用Neuraxle管道步骤:
树立榜样
import numpy as np
a = np.array([1,0,3])
b = np.array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
进行实际的转换
from neuraxle.steps.numpy import OneHotEncoder
encoder = OneHotEncoder(nb_columns=4)
b_pred = encoder.transform(a)
断言它有效
assert b_pred == b
文档链接:neuraxle.steps.numpy.OneHotEncoder