给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
当前回答
我认为简短的答案是否定的。对于n维的更一般的情况,我想到了这个:
# For 2-dimensional data, 4 values
a = np.array([[0, 1, 2], [3, 2, 1]])
z = np.zeros(list(a.shape) + [4])
z[list(np.indices(z.shape[:-1])) + [a]] = 1
我想知道是否有更好的解决方案——我不喜欢我必须在最后两行创建这些列表。不管怎样,我用timeit做了一些测量,似乎基于numpy的(索引/范围)和迭代版本的表现是一样的。
其他回答
>>> values = [1, 0, 3]
>>> n_values = np.max(values) + 1
>>> np.eye(n_values)[values]
array([[ 0., 1., 0., 0.],
[ 1., 0., 0., 0.],
[ 0., 0., 0., 1.]])
我发现最简单的解决方案结合np。拿着和眼睛
def one_hot(x, depth: int):
return np.take(np.eye(depth), x, axis=0)
对任何形状的x都成立。
你可以使用sklearn.预处理。labelbinarizer:
例子:
import sklearn.preprocessing
a = [1,0,3]
label_binarizer = sklearn.preprocessing.LabelBinarizer()
label_binarizer.fit(range(max(a)+1))
b = label_binarizer.transform(a)
print('{0}'.format(b))
输出:
[[0 1 0 0]
[1 0 0 0]
[0 0 0 1]]
除此之外,你可以初始化sklearn.pre - processing. labelbinarizer(),这样transform的输出是稀疏的。
创建一个有足够列的零数组b,即a.max() + 1。 然后,对于每一行i,设置第a[i]列为1。
>>> a = np.array([1, 0, 3])
>>> b = np.zeros((a.size, a.max() + 1))
>>> b[np.arange(a.size), a] = 1
>>> b
array([[ 0., 1., 0., 0.],
[ 1., 0., 0., 0.],
[ 0., 0., 0., 1.]])
如果使用tensorflow,则存在one_hot():
import tensorflow as tf
import numpy as np
a = np.array([1, 0, 3])
depth = 4
b = tf.one_hot(a, depth)
# <tf.Tensor: shape=(3, 3), dtype=float32, numpy=
# array([[0., 1., 0.],
# [1., 0., 0.],
# [0., 0., 0.]], dtype=float32)>