给定一个一维下标数组:

a = array([1, 0, 3])

我想把它编码成一个2D数组:

b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])

当前回答

def one_hot(n, class_num, col_wise=True):
  a = np.eye(class_num)[n.reshape(-1)]
  return a.T if col_wise else a

# Column for different hot
print(one_hot(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 8, 7]), 10))
# Row for different hot
print(one_hot(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 8, 7]), 10, col_wise=False))

其他回答

这是一个与维度无关的独立解决方案。

这将把任何非负整数的N维数组arr转换为一个N+1维数组one_hot,其中one_hot[i_1,…,i_N,c] = 1表示arr[i_1,…,i_N] = c.可以通过np恢复输入。argmax (one_hot, 1)

def expand_integer_grid(arr, n_classes):
    """

    :param arr: N dim array of size i_1, ..., i_N
    :param n_classes: C
    :returns: one-hot N+1 dim array of size i_1, ..., i_N, C
    :rtype: ndarray

    """
    one_hot = np.zeros(arr.shape + (n_classes,))
    axes_ranges = [range(arr.shape[i]) for i in range(arr.ndim)]
    flat_grids = [_.ravel() for _ in np.meshgrid(*axes_ranges, indexing='ij')]
    one_hot[flat_grids + [arr.ravel()]] = 1
    assert((one_hot.sum(-1) == 1).all())
    assert(np.allclose(np.argmax(one_hot, -1), arr))
    return one_hot

使用下面的代码。这样效果最好。

def one_hot_encode(x):
"""
    argument
        - x: a list of labels
    return
        - one hot encoding matrix (number of labels, number of class)
"""
encoded = np.zeros((len(x), 10))

for idx, val in enumerate(x):
    encoded[idx][val] = 1

return encoded

在这里找到了p.s.你不需要进入链接。

这种类型的编码通常是numpy数组的一部分。如果你使用numpy数组,像这样:

a = np.array([1,0,3])

然后有一个非常简单的方法将其转换为1-hot编码

out = (np.arange(4) == a[:,None]).astype(np.float32)

就是这样。

>>> values = [1, 0, 3]
>>> n_values = np.max(values) + 1
>>> np.eye(n_values)[values]
array([[ 0.,  1.,  0.,  0.],
       [ 1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.]])

对于1-hot-encoding

   one_hot_encode=pandas.get_dummies(array)

例如

享受编码