给定一个一维下标数组:

a = array([1, 0, 3])

我想把它编码成一个2D数组:

b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])

当前回答

使用Neuraxle管道步骤:

树立榜样

import numpy as np
a = np.array([1,0,3])
b = np.array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])

进行实际的转换

from neuraxle.steps.numpy import OneHotEncoder
encoder = OneHotEncoder(nb_columns=4)
b_pred = encoder.transform(a)

断言它有效

assert b_pred == b

文档链接:neuraxle.steps.numpy.OneHotEncoder

其他回答

我认为简短的答案是否定的。对于n维的更一般的情况,我想到了这个:

# For 2-dimensional data, 4 values
a = np.array([[0, 1, 2], [3, 2, 1]])
z = np.zeros(list(a.shape) + [4])
z[list(np.indices(z.shape[:-1])) + [a]] = 1

我想知道是否有更好的解决方案——我不喜欢我必须在最后两行创建这些列表。不管怎样,我用timeit做了一些测量,似乎基于numpy的(索引/范围)和迭代版本的表现是一样的。

我发现最简单的解决方案结合np。拿着和眼睛

def one_hot(x, depth: int):
  return np.take(np.eye(depth), x, axis=0)

对任何形状的x都成立。

这是一个与维度无关的独立解决方案。

这将把任何非负整数的N维数组arr转换为一个N+1维数组one_hot,其中one_hot[i_1,…,i_N,c] = 1表示arr[i_1,…,i_N] = c.可以通过np恢复输入。argmax (one_hot, 1)

def expand_integer_grid(arr, n_classes):
    """

    :param arr: N dim array of size i_1, ..., i_N
    :param n_classes: C
    :returns: one-hot N+1 dim array of size i_1, ..., i_N, C
    :rtype: ndarray

    """
    one_hot = np.zeros(arr.shape + (n_classes,))
    axes_ranges = [range(arr.shape[i]) for i in range(arr.ndim)]
    flat_grids = [_.ravel() for _ in np.meshgrid(*axes_ranges, indexing='ij')]
    one_hot[flat_grids + [arr.ravel()]] = 1
    assert((one_hot.sum(-1) == 1).all())
    assert(np.allclose(np.argmax(one_hot, -1), arr))
    return one_hot

使用Neuraxle管道步骤:

树立榜样

import numpy as np
a = np.array([1,0,3])
b = np.array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])

进行实际的转换

from neuraxle.steps.numpy import OneHotEncoder
encoder = OneHotEncoder(nb_columns=4)
b_pred = encoder.transform(a)

断言它有效

assert b_pred == b

文档链接:neuraxle.steps.numpy.OneHotEncoder

以下是我认为有用的方法:

def one_hot(a, num_classes):
  return np.squeeze(np.eye(num_classes)[a.reshape(-1)])

这里num_classes表示您拥有的类的数量。如果你有一个形状为(10000,)的向量,这个函数将它转换为(10000,C)注意,a是零索引,即one_hot(np。数组([0,1]),2)将给出[[1,0],[0,1]]。

我相信这正是你想要的。

PS:源代码是Sequence models - deeplearning.ai