给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
当前回答
使用Neuraxle管道步骤:
树立榜样
import numpy as np
a = np.array([1,0,3])
b = np.array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
进行实际的转换
from neuraxle.steps.numpy import OneHotEncoder
encoder = OneHotEncoder(nb_columns=4)
b_pred = encoder.transform(a)
断言它有效
assert b_pred == b
文档链接:neuraxle.steps.numpy.OneHotEncoder
其他回答
你可以使用下面的代码转换成一个热向量:
设x是普通的类向量,它只有一个列,从0到某个数:
import numpy as np
np.eye(x.max()+1)[x]
如果0不是一个类;然后移除+1。
如果你正在使用keras,有一个内置的实用程序:
from keras.utils.np_utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=3)
它与@YXD的答案几乎相同(请参阅源代码)。
def one_hot(n, class_num, col_wise=True):
a = np.eye(class_num)[n.reshape(-1)]
return a.T if col_wise else a
# Column for different hot
print(one_hot(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 8, 7]), 10))
# Row for different hot
print(one_hot(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 8, 7]), 10, col_wise=False))
如果使用tensorflow,则存在one_hot():
import tensorflow as tf
import numpy as np
a = np.array([1, 0, 3])
depth = 4
b = tf.one_hot(a, depth)
# <tf.Tensor: shape=(3, 3), dtype=float32, numpy=
# array([[0., 1., 0.],
# [1., 0., 0.],
# [0., 0., 0.]], dtype=float32)>
使用Neuraxle管道步骤:
树立榜样
import numpy as np
a = np.array([1,0,3])
b = np.array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
进行实际的转换
from neuraxle.steps.numpy import OneHotEncoder
encoder = OneHotEncoder(nb_columns=4)
b_pred = encoder.transform(a)
断言它有效
assert b_pred == b
文档链接:neuraxle.steps.numpy.OneHotEncoder