给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
给定一个一维下标数组:
a = array([1, 0, 3])
我想把它编码成一个2D数组:
b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])
当前回答
对于1-hot-encoding
one_hot_encode=pandas.get_dummies(array)
例如
享受编码
其他回答
以下是我认为有用的方法:
def one_hot(a, num_classes):
return np.squeeze(np.eye(num_classes)[a.reshape(-1)])
这里num_classes表示您拥有的类的数量。如果你有一个形状为(10000,)的向量,这个函数将它转换为(10000,C)注意,a是零索引,即one_hot(np。数组([0,1]),2)将给出[[1,0],[0,1]]。
我相信这正是你想要的。
PS:源代码是Sequence models - deeplearning.ai
你可以使用下面的代码转换成一个热向量:
设x是普通的类向量,它只有一个列,从0到某个数:
import numpy as np
np.eye(x.max()+1)[x]
如果0不是一个类;然后移除+1。
我最近遇到了一个类似的问题,发现只有当你的数字符合特定的形式时,答案才令人满意。例如,如果你想单热编码以下列表:
all_good_list = [0,1,2,3,4]
继续吧,上面已经提到了发布的解决方案。但如果考虑到这些数据:
problematic_list = [0,23,12,89,10]
如果使用上面提到的方法,最后可能会得到90个单一热列。这是因为所有答案都包含n = np.max(a)+1。我找到了一个更通用的解决方案,想和你们分享:
import numpy as np
import sklearn
sklb = sklearn.preprocessing.LabelBinarizer()
a = np.asarray([1,2,44,3,2])
n = np.unique(a)
sklb.fit(n)
b = sklb.transform(a)
我希望有人遇到上述解决方案的相同限制,这可能会派上用场
如果使用tensorflow,则存在one_hot():
import tensorflow as tf
import numpy as np
a = np.array([1, 0, 3])
depth = 4
b = tf.one_hot(a, depth)
# <tf.Tensor: shape=(3, 3), dtype=float32, numpy=
# array([[0., 1., 0.],
# [1., 0., 0.],
# [0., 0., 0.]], dtype=float32)>
为了详细说明K3—rnc的优秀答案,这里有一个更通用的版本:
def onehottify(x, n=None, dtype=float):
"""1-hot encode x with the max value n (computed from data if n is None)."""
x = np.asarray(x)
n = np.max(x) + 1 if n is None else n
return np.eye(n, dtype=dtype)[x]
此外,这里是这个方法的快速和粗略的基准测试,以及YXD目前接受的答案(略有更改,以便他们提供相同的API,除了后者只适用于1D ndarray):
def onehottify_only_1d(x, n=None, dtype=float):
x = np.asarray(x)
n = np.max(x) + 1 if n is None else n
b = np.zeros((len(x), n), dtype=dtype)
b[np.arange(len(x)), x] = 1
return b
后一种方法快35% (MacBook Pro 13 2015),但前一种更通用:
>>> import numpy as np
>>> np.random.seed(42)
>>> a = np.random.randint(0, 9, size=(10_000,))
>>> a
array([6, 3, 7, ..., 5, 8, 6])
>>> %timeit onehottify(a, 10)
188 µs ± 5.03 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
>>> %timeit onehottify_only_1d(a, 10)
139 µs ± 2.78 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)