给定一个一维下标数组:

a = array([1, 0, 3])

我想把它编码成一个2D数组:

b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])

当前回答

>>> values = [1, 0, 3]
>>> n_values = np.max(values) + 1
>>> np.eye(n_values)[values]
array([[ 0.,  1.,  0.,  0.],
       [ 1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.]])

其他回答

>>> values = [1, 0, 3]
>>> n_values = np.max(values) + 1
>>> np.eye(n_values)[values]
array([[ 0.,  1.,  0.,  0.],
       [ 1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.]])

创建一个有足够列的零数组b,即a.max() + 1。 然后,对于每一行i,设置第a[i]列为1。

>>> a = np.array([1, 0, 3])
>>> b = np.zeros((a.size, a.max() + 1))
>>> b[np.arange(a.size), a] = 1

>>> b
array([[ 0.,  1.,  0.,  0.],
       [ 1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.]])

使用下面的代码。这样效果最好。

def one_hot_encode(x):
"""
    argument
        - x: a list of labels
    return
        - one hot encoding matrix (number of labels, number of class)
"""
encoded = np.zeros((len(x), 10))

for idx, val in enumerate(x):
    encoded[idx][val] = 1

return encoded

在这里找到了p.s.你不需要进入链接。

以下是我认为有用的方法:

def one_hot(a, num_classes):
  return np.squeeze(np.eye(num_classes)[a.reshape(-1)])

这里num_classes表示您拥有的类的数量。如果你有一个形状为(10000,)的向量,这个函数将它转换为(10000,C)注意,a是零索引,即one_hot(np。数组([0,1]),2)将给出[[1,0],[0,1]]。

我相信这正是你想要的。

PS:源代码是Sequence models - deeplearning.ai

我认为简短的答案是否定的。对于n维的更一般的情况,我想到了这个:

# For 2-dimensional data, 4 values
a = np.array([[0, 1, 2], [3, 2, 1]])
z = np.zeros(list(a.shape) + [4])
z[list(np.indices(z.shape[:-1])) + [a]] = 1

我想知道是否有更好的解决方案——我不喜欢我必须在最后两行创建这些列表。不管怎样,我用timeit做了一些测量,似乎基于numpy的(索引/范围)和迭代版本的表现是一样的。