给定一个一维下标数组:

a = array([1, 0, 3])

我想把它编码成一个2D数组:

b = array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])

当前回答

>>> values = [1, 0, 3]
>>> n_values = np.max(values) + 1
>>> np.eye(n_values)[values]
array([[ 0.,  1.,  0.,  0.],
       [ 1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.]])

其他回答

创建一个有足够列的零数组b,即a.max() + 1。 然后,对于每一行i,设置第a[i]列为1。

>>> a = np.array([1, 0, 3])
>>> b = np.zeros((a.size, a.max() + 1))
>>> b[np.arange(a.size), a] = 1

>>> b
array([[ 0.,  1.,  0.,  0.],
       [ 1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.]])

如果你正在使用keras,有一个内置的实用程序:

from keras.utils.np_utils import to_categorical   

categorical_labels = to_categorical(int_labels, num_classes=3)

它与@YXD的答案几乎相同(请参阅源代码)。

下面是我根据上面的答案和我自己的用例写的一个示例函数:

def label_vector_to_one_hot_vector(vector, one_hot_size=10):
    """
    Use to convert a column vector to a 'one-hot' matrix

    Example:
        vector: [[2], [0], [1]]
        one_hot_size: 3
        returns:
            [[ 0.,  0.,  1.],
             [ 1.,  0.,  0.],
             [ 0.,  1.,  0.]]

    Parameters:
        vector (np.array): of size (n, 1) to be converted
        one_hot_size (int) optional: size of 'one-hot' row vector

    Returns:
        np.array size (vector.size, one_hot_size): converted to a 'one-hot' matrix
    """
    squeezed_vector = np.squeeze(vector, axis=-1)

    one_hot = np.zeros((squeezed_vector.size, one_hot_size))

    one_hot[np.arange(squeezed_vector.size), squeezed_vector] = 1

    return one_hot

label_vector_to_one_hot_vector(vector=[[2], [0], [1]], one_hot_size=3)

这是一个与维度无关的独立解决方案。

这将把任何非负整数的N维数组arr转换为一个N+1维数组one_hot,其中one_hot[i_1,…,i_N,c] = 1表示arr[i_1,…,i_N] = c.可以通过np恢复输入。argmax (one_hot, 1)

def expand_integer_grid(arr, n_classes):
    """

    :param arr: N dim array of size i_1, ..., i_N
    :param n_classes: C
    :returns: one-hot N+1 dim array of size i_1, ..., i_N, C
    :rtype: ndarray

    """
    one_hot = np.zeros(arr.shape + (n_classes,))
    axes_ranges = [range(arr.shape[i]) for i in range(arr.ndim)]
    flat_grids = [_.ravel() for _ in np.meshgrid(*axes_ranges, indexing='ij')]
    one_hot[flat_grids + [arr.ravel()]] = 1
    assert((one_hot.sum(-1) == 1).all())
    assert(np.allclose(np.argmax(one_hot, -1), arr))
    return one_hot

使用Neuraxle管道步骤:

树立榜样

import numpy as np
a = np.array([1,0,3])
b = np.array([[0,1,0,0], [1,0,0,0], [0,0,0,1]])

进行实际的转换

from neuraxle.steps.numpy import OneHotEncoder
encoder = OneHotEncoder(nb_columns=4)
b_pred = encoder.transform(a)

断言它有效

assert b_pred == b

文档链接:neuraxle.steps.numpy.OneHotEncoder