有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)

你能举个例子吗?


当前回答

There is a good use case for using a O(log(n)) algorithm instead of an O(1) algorithm that the numerous other answers have ignored: immutability. Hash maps have O(1) puts and gets, assuming good distribution of hash values, but they require mutable state. Immutable tree maps have O(log(n)) puts and gets, which is asymptotically slower. However, immutability can be valuable enough to make up for worse performance and in the case where multiple versions of the map need to be retained, immutability allows you to avoid having to copy the map, which is O(n), and therefore can improve performance.

其他回答

人们已经回答了你的确切问题,所以我要回答一个稍微不同的问题,人们来这里时可能会想到这个问题。

许多“O(1)时间”算法和数据结构实际上只需要预期的O(1)时间,这意味着它们的平均运行时间是O(1),可能仅在某些假设下。

常见的例子:哈希表,“数组列表”的扩展(也就是动态大小的数组/向量)。

在这种情况下,您可能更喜欢使用保证时间绝对受对数限制的数据结构或算法,即使它们的平均性能可能更差。 一个例子可能是平衡二叉搜索树,它的运行时间平均较差,但在最坏的情况下更好。

我在这里的回答是,在随机矩阵的所有行的快速随机加权选择是一个例子,当m不是太大时,复杂度为O(m)的算法比复杂度为O(log(m))的算法更快。

假设您正在嵌入式系统上实现一个黑名单,其中0到1,000,000之间的数字可能被列入黑名单。这就给你留下了两个选择:

使用1,000,000位的bitset 使用黑名单整数的排序数组,并使用二进制搜索来访问它们

对bitset的访问将保证常量访问。从时间复杂度来看,它是最优的。从理论和实践的角度来看(它是O(1),常量开销极低)。

不过,你可能更喜欢第二种解决方案。特别是如果您希望黑名单整数的数量非常小,因为这样内存效率更高。

即使您不为内存稀缺的嵌入式系统开发,我也可以将任意限制从1,000,000增加到1,000,000,000,000,并提出相同的论点。那么bitset将需要大约125G的内存。保证最坏情况复杂度为O(1)可能无法说服您的老板为您提供如此强大的服务器。

在这里,我强烈倾向于二叉搜索(O(log n))或二叉树(O(log n))而不是O(1)位集。在实践中,最坏情况复杂度为O(n)的哈希表可能会击败所有这些算法。

当n很小时,O(1)总是很慢。

总有一个隐藏常数,在O(log n)算法中可以更低。因此,在实际生活数据中,它可以更快地工作。

还有空间问题(比如在烤面包机上运行)。

还有开发人员的时间问题——O(log n)可能更容易实现和验证1000倍。