有没有什么情况下你更喜欢O(log n)时间复杂度而不是O(1)时间复杂度?还是O(n)到O(log n)

你能举个例子吗?


当前回答

当O(1)中的“1”工作单元相对于O(log n)中的工作单元非常高,且期望集大小较小时。例如,如果数组中只有两到三个项,那么计算Dictionary哈希码可能比迭代数组要慢。

or

当O(1)算法中的内存或其他非时间资源需求相对于O(log n)算法非常大时。

其他回答

当O(1)中的“1”工作单元相对于O(log n)中的工作单元非常高,且期望集大小较小时。例如,如果数组中只有两到三个项,那么计算Dictionary哈希码可能比迭代数组要慢。

or

当O(1)算法中的内存或其他非时间资源需求相对于O(log n)算法非常大时。

Yes.

在实际情况下,我们运行了一些使用短字符串和长字符串键进行表查找的测试。

我们使用了std::map, std::unordered_map和一个哈希,该哈希最多对字符串长度进行10次采样(我们的键倾向于guidlike,所以这是体面的),以及一个哈希,对每个字符进行采样(理论上减少了冲突),一个未排序的向量,其中我们进行==比较,以及(如果我没记错的话)一个未排序的向量,其中我们还存储了一个哈希,首先比较哈希,然后比较字符。

这些算法的范围从O(1) (unordered_map)到O(n)(线性搜索)。

对于中等大小的N,通常O(N)优于O(1)。我们怀疑这是因为基于节点的容器需要我们的计算机在内存中跳跃更多,而基于线性的容器则不需要。

O(lgn)存在于两者之间。我不记得是怎么回事了。

性能差异并不大,在更大的数据集上,基于哈希的表现要好得多。所以我们坚持使用基于哈希的无序映射。

实际上,对于合理的n大小,O(lgn)为O(1)。如果你的计算机在你的表中只有40亿的空间,那么O(lgn)的上界是32。(lg(2^32)=32)(在计算机科学中,lg是log based 2的简称)。

在实践中,lg(n)算法比O(1)算法慢,不是因为对数增长因子,而是因为lg(n)部分通常意味着算法有一定程度的复杂性,并且这种复杂性比lg(n)项中的任何“增长”都增加了更大的常数因子。

然而,复杂的O(1)算法(如哈希映射)很容易具有类似或更大的常数因子。

在n有界且O(1)算法的常数乘子高于log(n)上的界的任意点。例如,在哈希集中存储值是O(1),但可能需要对哈希函数进行昂贵的计算。如果数据项可以简单地进行比较(相对于某些顺序),并且n的边界是这样的,log n明显小于任何一项上的哈希计算,那么存储在平衡二叉树中可能比存储在哈希集中更快。

我很惊讶没有人提到内存绑定应用程序。

可能存在一种算法具有较少的浮点运算,这要么是因为它的复杂性(即O(1) < O(log n)),要么是因为复杂度前面的常数更小(即2n2 < 6n2)。无论如何,如果较低的FLOP算法的内存限制更大,您可能仍然更喜欢具有更多FLOP的算法。

我所说的“内存受限”是指您经常访问的数据经常超出缓存。为了获取这些数据,在对其执行操作之前,必须将内存从实际内存空间拉到缓存中。这个抓取步骤通常非常慢——比您的操作本身慢得多。

因此,如果你的算法需要更多的操作(但这些操作是在已经在缓存中的数据上执行的[因此不需要读取]),它仍然会在实际的walltime方面以更少的操作(必须在缓存外的数据上执行[因此需要读取])胜过你的算法。

总有一个隐藏常数,在O(log n)算法中可以更低。因此,在实际生活数据中,它可以更快地工作。

还有空间问题(比如在烤面包机上运行)。

还有开发人员的时间问题——O(log n)可能更容易实现和验证1000倍。