给定一个pandas数据框架,其中包含可能分散在这里和那里的NaN值:
问:如何确定哪些列包含NaN值?特别是,我能得到包含nan的列名的列表吗?
给定一个pandas数据框架,其中包含可能分散在这里和那里的NaN值:
问:如何确定哪些列包含NaN值?特别是,我能得到包含nan的列名的列表吗?
当前回答
我有一个问题,我必须有许多列在屏幕上进行视觉检查,所以一个筛选并返回违规列的短列表比较
nan_cols = [i for i in df.columns if df[i].isnull().any()]
如果这对大家有帮助的话
此外,如果您想过滤掉nan值多于阈值的列,那么就使用85%
Nan_cols85 = [i for i in df.]if df[i].isnull().sum() > 0.85*len(data)]
其他回答
我使用这三行代码打印出包含至少一个空值的列名:
for column in dataframe:
if dataframe[column].isnull().any():
print('{0} has {1} null values'.format(column, dataframe[column].isnull().sum()))
这对我很有效,
1. 用于获取至少有一个空值的列。(列名称)
data.columns[data.isnull().any()]
2. 用于获取具有count的列,且至少有1个空值。
data[data.columns[data.isnull().any()]].isnull().sum()
(可选) 3.获取空计数的百分比。
data[data.columns[data.isnull().any()]].isnull().sum() * 100 / data.shape[0]
我知道这是一个很好的回答问题,但我想做一个小小的调整。这个答案只返回包含空值的列,并且仍然显示空值的计数。
1-liner:
pd.isnull(df).sum()[pd.isnull(df).sum() > 0]
描述
在每一列中计算空值
null_count_ser = pd.isnull(df).sum()
True|False序列,描述该列是否为空
is_null_ser = null_count_ser > 0
使用T|F系列来过滤那些没有
null_count_ser[is_null_ser]
示例输出
name 5
phone 187
age 644
df.columns[df.isnull().any()].tolist()
它将返回包含空行的列的名称
这两种方法都有效:
df.isnull().sum()
df.isna().sum()
DataFrame方法isna()或isnull()完全相同。
注意:空字符串”被认为是False(不认为是NA)