给定一个pandas数据框架,其中包含可能分散在这里和那里的NaN值:
问:如何确定哪些列包含NaN值?特别是,我能得到包含nan的列名的列表吗?
给定一个pandas数据框架,其中包含可能分散在这里和那里的NaN值:
问:如何确定哪些列包含NaN值?特别是,我能得到包含nan的列名的列表吗?
当前回答
如果您希望查找包含NaN值的列并获得列名列表,则该代码可以工作。
na_names = df.isnull().any()
list(na_names.where(na_names == True).dropna().index)
如果要查找值都是nan的列,可以将any替换为all。
其他回答
这对我很有效,
1. 用于获取至少有一个空值的列。(列名称)
data.columns[data.isnull().any()]
2. 用于获取具有count的列,且至少有1个空值。
data[data.columns[data.isnull().any()]].isnull().sum()
(可选) 3.获取空计数的百分比。
data[data.columns[data.isnull().any()]].isnull().sum() * 100 / data.shape[0]
df.columns[df.isnull().any()].tolist()
它将返回包含空行的列的名称
我使用这三行代码打印出包含至少一个空值的列名:
for column in dataframe:
if dataframe[column].isnull().any():
print('{0} has {1} null values'.format(column, dataframe[column].isnull().sum()))
您可以使用df.isnull().sum()。它显示了每个特征的所有列和总nan。
这两种方法都有效:
df.isnull().sum()
df.isna().sum()
DataFrame方法isna()或isnull()完全相同。
注意:空字符串”被认为是False(不认为是NA)