给定一个pandas数据框架,其中包含可能分散在这里和那里的NaN值:

问:如何确定哪些列包含NaN值?特别是,我能得到包含nan的列名的列表吗?


当前回答

这两种方法都有效:

df.isnull().sum()
df.isna().sum()

DataFrame方法isna()或isnull()完全相同。

注意:空字符串”被认为是False(不认为是NA)

其他回答

这两种方法都有效:

df.isnull().sum()
df.isna().sum()

DataFrame方法isna()或isnull()完全相同。

注意:空字符串”被认为是False(不认为是NA)

df.isna()返回NaN值为True,其余为False。所以,做:

.any df.isna () ()

将返回True的任何列有NaN, False的其余

Features_with_na =[feature用于数据帧中的特征。列if dataframe[features].isnull().sum()>0]

对于features_with_na中的feature: Print (feature, np.round(dataframe[feature].isnull().mean(), 4), '%缺失值') 打印(features_with_na)

它将为dataframe中的每一列提供缺失值的%

这是其中一种方法。

import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan],'c':[np.nan,2,np.nan], 'd':[np.nan,np.nan,np.nan]})
print(pd.isnull(df).sum())

在这里输入图像描述

df.columns[df.isnull().any()].tolist()

它将返回包含空行的列的名称