给定一个pandas数据框架,其中包含可能分散在这里和那里的NaN值:
问:如何确定哪些列包含NaN值?特别是,我能得到包含nan的列名的列表吗?
给定一个pandas数据框架,其中包含可能分散在这里和那里的NaN值:
问:如何确定哪些列包含NaN值?特别是,我能得到包含nan的列名的列表吗?
当前回答
这是其中一种方法。
import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan],'c':[np.nan,2,np.nan], 'd':[np.nan,np.nan,np.nan]})
print(pd.isnull(df).sum())
在这里输入图像描述
其他回答
如果您希望查找包含NaN值的列并获得列名列表,则该代码可以工作。
na_names = df.isnull().any()
list(na_names.where(na_names == True).dropna().index)
如果要查找值都是nan的列,可以将any替换为all。
df.columns[df.isnull().any()].tolist()
它将返回包含空行的列的名称
这对我很有效,
1. 用于获取至少有一个空值的列。(列名称)
data.columns[data.isnull().any()]
2. 用于获取具有count的列,且至少有1个空值。
data[data.columns[data.isnull().any()]].isnull().sum()
(可选) 3.获取空计数的百分比。
data[data.columns[data.isnull().any()]].isnull().sum() * 100 / data.shape[0]
要查看包含nan的列和包含nan的行:
isnulldf = df.isnull()
columns_containing_nulls = isnulldf.columns[isnulldf.any()]
rows_containing_nulls = df[isnulldf[columns_containing_nulls].any(axis='columns')].index
only_nulls_df = df[columns_containing_nulls].loc[rows_containing_nulls]
print(only_nulls_df)
更新:使用熊猫0.22.0
更新的Pandas版本有新的方法“DataFrame.isna()”和“DataFrame.notna()”
In [71]: df
Out[71]:
a b c
0 NaN 7.0 0
1 0.0 NaN 4
2 2.0 NaN 4
3 1.0 7.0 0
4 1.0 3.0 9
5 7.0 4.0 9
6 2.0 6.0 9
7 9.0 6.0 4
8 3.0 0.0 9
9 9.0 0.0 1
In [72]: df.isna().any()
Out[72]:
a True
b True
c False
dtype: bool
作为列列表:
In [74]: df.columns[df.isna().any()].tolist()
Out[74]: ['a', 'b']
选择这些列(至少包含一个NaN值):
In [73]: df.loc[:, df.isna().any()]
Out[73]:
a b
0 NaN 7.0
1 0.0 NaN
2 2.0 NaN
3 1.0 7.0
4 1.0 3.0
5 7.0 4.0
6 2.0 6.0
7 9.0 6.0
8 3.0 0.0
9 9.0 0.0
旧的回答:
尝试使用isnull():
In [97]: df
Out[97]:
a b c
0 NaN 7.0 0
1 0.0 NaN 4
2 2.0 NaN 4
3 1.0 7.0 0
4 1.0 3.0 9
5 7.0 4.0 9
6 2.0 6.0 9
7 9.0 6.0 4
8 3.0 0.0 9
9 9.0 0.0 1
In [98]: pd.isnull(df).sum() > 0
Out[98]:
a True
b True
c False
dtype: bool
或者像@root提出的更清晰的版本:
In [5]: df.isnull().any()
Out[5]:
a True
b True
c False
dtype: bool
In [7]: df.columns[df.isnull().any()].tolist()
Out[7]: ['a', 'b']
要选择一个子集-所有列至少包含一个NaN值:
In [31]: df.loc[:, df.isnull().any()]
Out[31]:
a b
0 NaN 7.0
1 0.0 NaN
2 2.0 NaN
3 1.0 7.0
4 1.0 3.0
5 7.0 4.0
6 2.0 6.0
7 9.0 6.0
8 3.0 0.0
9 9.0 0.0