我已经阅读了维基百科上关于过程式编程和函数式编程的文章,但我还是有点困惑。有人能把它归结为核心吗?


当前回答

这里没有一个答案显示了惯用的函数式编程。递归阶乘的答案很适合在FP中表示递归,但大多数代码不是递归的,所以我不认为这个答案是完全具有代表性的。

假设你有一个字符串数组,每个字符串表示一个整数,比如“5”或“-200”。您希望根据内部测试用例检查这个输入字符串数组(使用整数比较)。两种解决方案如下所示

程序上的

arr_equal(a : [Int], b : [Str]) -> Bool {
    if(a.len != b.len) {
        return false;
    }

    bool ret = true;
    for( int i = 0; i < a.len /* Optimized with && ret*/; i++ ) {
        int a_int = a[i];
        int b_int = parseInt(b[i]);
        ret &= a_int == b_int;  
    }
    return ret;
}

功能

eq = i, j => i == j # This is usually a built-in
toInt = i => parseInt(i) # Of course, parseInt === toInt here, but this is for visualization

arr_equal(a : [Int], b : [Str]) -> Bool =
    zip(a, b.map(toInt)) # Combines into [Int, Int]
   .map(eq)
   .reduce(true, (i, j) => i && j) # Start with true, and continuously && it with each value

虽然纯函数式语言通常是研究语言(因为现实世界喜欢免费的副作用),但现实世界的过程式语言在适当的时候会使用更简单的函数式语法。

这通常是用Lodash这样的外部库实现的,或者是用Rust这样的新语言内置的。函数式编程的繁重工作是通过map、filter、reduce、currying、partial等函数/概念完成的,最后三个你可以查阅以进一步理解。

齿顶高

In order to be used in the wild, the compiler will normally have to work out how to convert the functional version into the procedural version internally, as function call overhead is too high. Recursive cases such as the factorial shown will use tricks such as tail call to remove O(n) memory usage. The fact that there are no side effects allows functional compilers to implement the && ret optimization even when the .reduce is done last. Using Lodash in JS, obviously does not allow for any optimization, so it is a hit to performance (Which isn't usually a concern with web development). Languages like Rust will optimize internally (And have functions such as try_fold to assist && ret optimization).

其他回答

我相信过程式/函数式/目标式编程是关于如何处理问题的。

The first style would plan everything in to steps, and solves the problem by implementing one step (a procedure) at a time. On the other hand, functional programming would emphasize the divide-and-conquer approach, where the problem is divided into sub-problem, then each sub-problem is solved (creating a function to solve that sub problem) and the results are combined to create the answer for the whole problem. Lastly, Objective programming would mimic the real world by create a mini-world inside the computer with many objects, each of which has a (somewhat) unique characteristics, and interacts with others. From those interactions the result would emerge.

每种编程风格都有自己的优点和缺点。因此,做一些诸如“纯编程”(即纯粹的程序设计——顺便说一下,没有人会这样做,这有点奇怪——或纯粹的函数式或纯粹的目标)是非常困难的,如果不是不可能的话,除了一些专门设计来展示编程风格优势的基本问题(因此,我们称那些喜欢纯粹的人为“weenie”:D)。

Then, from those styles, we have programming languages that is designed to optimized for some each style. For example, Assembly is all about procedural. Okay, most early languages are procedural, not only Asm, like C, Pascal, (and Fortran, I heard). Then, we have all famous Java in objective school (Actually, Java and C# is also in a class called "money-oriented," but that is subject for another discussion). Also objective is Smalltalk. In functional school, we would have "nearly functional" (some considered them to be impure) Lisp family and ML family and many "purely functional" Haskell, Erlang, etc. By the way, there are many general languages such as Perl, Python, Ruby.

我在这里没有看到真正强调的一点是,现代函数语言(如Haskell)实际上更多地关注流控制的第一类函数,而不是显式递归。您不需要像上面那样在Haskell中递归地定义阶乘。我想是这样的

fac n = foldr (*) 1 [1..n]

是一个完美的惯用结构,在精神上更接近于使用循环,而不是使用显式递归。

这里没有一个答案显示了惯用的函数式编程。递归阶乘的答案很适合在FP中表示递归,但大多数代码不是递归的,所以我不认为这个答案是完全具有代表性的。

假设你有一个字符串数组,每个字符串表示一个整数,比如“5”或“-200”。您希望根据内部测试用例检查这个输入字符串数组(使用整数比较)。两种解决方案如下所示

程序上的

arr_equal(a : [Int], b : [Str]) -> Bool {
    if(a.len != b.len) {
        return false;
    }

    bool ret = true;
    for( int i = 0; i < a.len /* Optimized with && ret*/; i++ ) {
        int a_int = a[i];
        int b_int = parseInt(b[i]);
        ret &= a_int == b_int;  
    }
    return ret;
}

功能

eq = i, j => i == j # This is usually a built-in
toInt = i => parseInt(i) # Of course, parseInt === toInt here, but this is for visualization

arr_equal(a : [Int], b : [Str]) -> Bool =
    zip(a, b.map(toInt)) # Combines into [Int, Int]
   .map(eq)
   .reduce(true, (i, j) => i && j) # Start with true, and continuously && it with each value

虽然纯函数式语言通常是研究语言(因为现实世界喜欢免费的副作用),但现实世界的过程式语言在适当的时候会使用更简单的函数式语法。

这通常是用Lodash这样的外部库实现的,或者是用Rust这样的新语言内置的。函数式编程的繁重工作是通过map、filter、reduce、currying、partial等函数/概念完成的,最后三个你可以查阅以进一步理解。

齿顶高

In order to be used in the wild, the compiler will normally have to work out how to convert the functional version into the procedural version internally, as function call overhead is too high. Recursive cases such as the factorial shown will use tricks such as tail call to remove O(n) memory usage. The fact that there are no side effects allows functional compilers to implement the && ret optimization even when the .reduce is done last. Using Lodash in JS, obviously does not allow for any optimization, so it is a hit to performance (Which isn't usually a concern with web development). Languages like Rust will optimize internally (And have functions such as try_fold to assist && ret optimization).

进一步阐述康拉德的评论:

求值的顺序不是 定义良好的

一些函数式语言有所谓的惰性求值。这意味着直到需要该值时才执行函数。在此之前,传递的是函数本身。

过程式语言是步骤1、步骤2、步骤3……如果在第二步你说加2 + 2,它马上就会做。在惰性求值中,你会说2 + 2,但如果结果从未被使用,它就永远不会做加法。

过程式编程将语句序列和条件构造划分为单独的块,称为过程,这些块通过参数化(非函数式)值。

函数式编程与此类似,只是函数是一类值,因此它们可以作为参数传递给其他函数,并作为函数调用的结果返回。

注意,在这个解释中,函数式编程是过程式编程的泛化。然而,少数人将“函数式编程”解释为没有副作用,这与除Haskell之外的所有主要函数式语言都完全不同,但无关紧要。